
Programming Principles in Python (CSCI 503/490)

Sequences

Dr. David Koop

(some slides adapted from Dr. Reva Freedman)

D. Koop, CSCI 503/490, Fall 2024

For Loop
• for loops in Python are really for-each loops
• Always an element that is the current element
- Can be used to iterate through iterables (containers, generators, strings)
- Can be used for counting

• for i in range(5):
 print(i) # 0 1 2 3 4

• range(5) generates the numbers 0,1,2,3,4

2D. Koop, CSCI 503/490, Fall 2024

Range
• Different method signatures

- range(n) → 0, 1, …, n-1
- range(start, end) → start, start + 1, …, end - 1

- range(start, end, step)
 → start, start + step, … < end

• Negative steps:
- range(0,4,-1) # <nothing>

- range(4,0,-1) # 4 3 2 1

• Floating-point arguments are not allowed

3D. Koop, CSCI 503/490, Fall 2024

Sequences
• Strings "abcde", Lists [1, 2, 3, 4, 5], and Tuples (1, 2, 3, 4, 5)

• Defining a list: my_list = [0, 1, 2, 3, 4]
• But lists can store different types:

- my_list = [0, "a", 1.34]
• Including other lists:

- my_list = [0, "a", 1.34, [1, 2, 3]]

• Others are similar: tuples use parenthesis, strings are delineated by quotes
(single or double)

4D. Koop, CSCI 503/490, Fall 2024

Sequence Operations
• Concatenate: [1, 2] + [3, 4] # [1,2,3,4]
• Repeat: [1,2] * 3 # [1,2,1,2,1,2]
• Length: my_list = [1,2]; len(my_list) # 2

• Concatenate: (1, 2) + (3, 4) # (1,2,3,4)
• Repeat: (1,2) * 3 # (1,2,1,2,1,2)
• Length: my_tuple = (1,2); len(my_tuple) # 2

• Concatenate: "ab" + "cd" # "abcd"
• Repeat: "ab" * 3 # "ababab"
• Length: my_str = "ab"; len(my_str) # 2

5D. Koop, CSCI 503/490, Fall 2024

Assignment 2
• Due Wednesday
• Python control flow and functions
• Compute the 3n+1 function and related values
• Make sure to follow instructions
- Name the submitted file a2.ipynb
- Put your name and z-id in the first cell
- Label each part of the assignment using markdown
- Make sure to produce output according to specifications

6D. Koop, CSCI 503/490, Fall 2024

http://faculty.cs.niu.edu/~dakoop/cs503-2024fa/assignment2.html

Sequence Indexing
• Square brackets are used to pull out an element of a sequence
• We always start counting at zero!
• my_str = "abcde"; my_str[0] # "a"

• my_list = [1,2,3,4,5]; my_list[2] # 3

• my_tuple = (1,2,3,4,5); my_tuple[5] # IndexError

7D. Koop, CSCI 503/490, Fall 2024

a b c d e

0 1 2 3 4

Negative Indexing
• Subtract from the end of the sequence to the beginning
• We always start counting at zero -1 (zero would be ambiguous!)
• my_str = "abcde"; my_str[-1] # "e"

• my_list = [1,2,3,4,5]; my_list[-3] # 3

• my_tuple = (1,2,3,4,5); my_tuple[-5] # 1

8D. Koop, CSCI 503/490, Fall 2024

a b c d e

0 1 2 3 4

-5 -4 -3 -2 -1

Slicing
• Want a subsequence of the given sequence
• Specify the start and the first index not included
• Returns the same type of sequence
• my_str = "abcde"; my_str[1:3] # "bc"

• my_list = [1,2,3,4,5]; my_list[3:4] # [4]

• my_tuple = (1,2,3,4,5); my_tuple[2:99] # (3,4,5)

9D. Koop, CSCI 503/490, Fall 2024

a b c d e

0 1 2 3 4

[1:3]

Negative Indices with Slices
• Negative indices can be used instead or with non-negative indices
• my_str = "abcde"; my_str[-4:-2] # "bc"

• my_list = [1,2,3,4,5]; my_list[3:-1] # [4]

• How do we include the last element?
• my_tuple = (1,2,3,4,5); my_tuple[-2:?]

10D. Koop, CSCI 503/490, Fall 2024

[-4:-2] a b c d e

0 1 2 3 4

-5 -4 -3 -2 -1

Negative Indices with Slices
• Negative indices can be used instead or with non-negative indices
• my_str = "abcde"; my_str[-4:-2] # "bc"

• my_list = [1,2,3,4,5]; my_list[3:-1] # [4]

• How do we include the last element?
• my_tuple = (1,2,3,4,5); my_tuple[-2:?]

10D. Koop, CSCI 503/490, Fall 2024

[-4:-2] a b c d e

0 1 2 3 4

-5 -4 -3 -2 -1

Implicit Indices
• Don't need to write indices for the beginning or end of a sequence
• Omitting the first number of a slice means start from the beginning
• Omitting the last number of a slice means go through the end
• my_tuple = (1,2,3,4,5); my_tuple[-2:len(my_tuple)]

• my_tuple = (1,2,3,4,5); my_tuple[-2:] # (4,5)

• Can create a copy of a sequence by omitting both
• my_list = [1,2,3,4,5]; my_list[:] # [1,2,3,4,5]

11D. Koop, CSCI 503/490, Fall 2024

Iteration
• for d in sequence:
 # do stuff

• Important: d is a data item, not an index!
• sequence = "abcdef"
for d in sequence:
 print(d, end=" ") # a b c d e f

• sequence = [1,2,3,4,5]
for d in sequence:
 print(d, end=" ") # 1 2 3 4 5

• sequence = (1,2,3,4,5)
for d in sequence:
 print(d, end=" ") # 1 2 3 4 5

12D. Koop, CSCI 503/490, Fall 2024

Membership
• <expr> in <seq>

• Returns True if the expression is in the sequence, False otherwise
• "a" in "abcde" # True

• 0 in [1,2,3,4,5] # False
• 3 in (3, 3, 3, 3) # True

13D. Koop, CSCI 503/490, Fall 2024

Sequence Operations

14D. Koop, CSCI 503/490, Fall 2024

Operator Meaning
<seq> + <seq> Concatenation

<seq> * <int-expr> Repetition
<seq>[<int-expr>] Indexing

len(<seq>) Length
<seq>[<int-expr?>:<int-expr?>] Slicing

for <var> in <seq>: Iteration
<expr> in <seq> Membership (Boolean)

Sequence Operations

14D. Koop, CSCI 503/490, Fall 2024

Operator Meaning
<seq> + <seq> Concatenation

<seq> * <int-expr> Repetition
<seq>[<int-expr>] Indexing

len(<seq>) Length
<seq>[<int-expr?>:<int-expr?>] Slicing

for <var> in <seq>: Iteration
<expr> in <seq> Membership (Boolean)

<int-expr?>: may be <int-expr> but also can be empty

What's the difference between the sequences?
• Strings can only store characters, lists & tuples can store arbitrary values
• Mutability: strings and tuples are immutable, lists are mutable
• my_list = [1, 2, 3, 4]
my_list[2] = 300
my_list # [1, 2, 300, 4]

• my_tuple = (1, 2, 3, 4); my_tuple[2] = 300 # TypeError

• my_str = "abcdef"; my_str[0] = "z" # TypeError

15D. Koop, CSCI 503/490, Fall 2024

List methods

16D. Koop, CSCI 503/490, Fall 2024

Method Meaning
<list>.append(d) Add element d to end of list.
<list>.extend(s) Add all elements in s to end of list.
<list>.insert(i, d) Insert d into list at index i.
<list>.pop(i) Deletes ith element of the list and returns its value.
<list>.sort() Sort the list.
<list>.reverse() Reverse the list.
<list>.remove(d) Deletes first occurrence of d in list.
<list>.index(d) Returns index of first occurrence of d.
<list>.count(d) Returns the number of occurrences of d in list.

List methods

16D. Koop, CSCI 503/490, Fall 2024

Method Meaning
<list>.append(d) Add element d to end of list.
<list>.extend(s) Add all elements in s to end of list.
<list>.insert(i, d) Insert d into list at index i.
<list>.pop(i) Deletes ith element of the list and returns its value.
<list>.sort() Sort the list.
<list>.reverse() Reverse the list.
<list>.remove(d) Deletes first occurrence of d in list.
<list>.index(d) Returns index of first occurrence of d.
<list>.count(d) Returns the number of occurrences of d in list.

Mutate

The del statement
• pop works well for removing an element by index plus it returns the element
• Can also remove an element at index i using

- del my_list[i]

• Note this is very different syntax so I prefer pop
• But del can delete slices

- del my_list[i:j]

• Also, can delete identifier names completely
- a = 32
del a
a # NameError

• This is different than a = None

17D. Koop, CSCI 503/490, Fall 2024

Updating collections
• There are three ways to deal with operations that update collections:
- Returns an updated copy of the list
- Updates the collection in place
- Updates the collection in place and returns it

• list.sort and list.reverse work in place and don't return the list
• Common error:

- sorted_list = my_list.sort() # sorted_list = None

• Instead:
- sorted_list = sorted(my_list)

18D. Koop, CSCI 503/490, Fall 2024

sorted and reversed
• For both sort and reverse, have sorted & reversed which are not in place
• Called with the sequence as the argument
• my_list = [7, 3, 2, 5, 1]
for d in sorted(my_list):
 print(d, end=" ") # 1 2 3 5 7

• my_list = [7, 3, 2, 5, 1]
for d in reversed(my_list):
 print(d, end=" ") # 1 5 2 3 7

• But this doesn't work:
- reversed_list = reversed(my_list)

• If you need a new list (same as with range):
- reversed_list = list(reversed(my_list))

19D. Koop, CSCI 503/490, Fall 2024

Reversed sort
• Both sort and sorted have a boolean parameter reverse that will sort the list

in reverse
• my_list = [7, 3, 2, 5, 1]
my_list.sort(reverse=True) # my_list now [7, 5, 3, 2, 1]

• for i in sorted(my_list, reverse=True):
 print(i, end = " ") # prints 7 5 3 2 1

• There is also a key parameter that should be a function that will be called on
each element before comparisons—the outputs will be used to sort

- Example: convert to lowercase

20D. Koop, CSCI 503/490, Fall 2024

Nested Sort
• By default, sorts by comparing inner elements in order
• sorted([[4,2],[1,5],[1,3],[3,5]])

- 1st element: 1 == 1 < 3 < 4
- 2nd element for equal: 3 < 5
- Result: [[1,3],[1,5],[3,5],[4,2]]

• Longer lists after shorter lists:
- sorted([[1,2],[1]]) # [[1],[1,2]]

21D. Koop, CSCI 503/490, Fall 2024

enumerate
• Often you do not need the index when iterating through a sequence
• If you need an index while looping through a sequence, use enumerate
• for i, d in enumerate(my_list):
 print("index:", i, "element:", d)

• Each time through the loop, it yields two items, the index i & the element d
• i, d is actually a tuple
• Automatically unpacked above, can manually do this, but don't!
• for t in enumerate(my_list):
 i = t[0]
 d = t[1]
 print("index:", i, "element:", d)

22D. Koop, CSCI 503/490, Fall 2024

enumerate
• Often you do not need the index when iterating through a sequence
• If you need an index while looping through a sequence, use enumerate
• for i, d in enumerate(my_list):
 print("index:", i, "element:", d)

• Each time through the loop, it yields two items, the index i & the element d
• i, d is actually a tuple
• Automatically unpacked above, can manually do this, but don't!
• for t in enumerate(my_list):
 i = t[0]
 d = t[1]
 print("index:", i, "element:", d)

22D. Koop, CSCI 503/490, Fall 2024

