Programming Principles in Python (CSCI 503/490)

SEeqUENCES

Dr. David Koop

(some slides adapted from Dr. Reva Freedman)

D. Koop, CSCI 503/490, Fall 2024 Northern Illinois University



D. Koop, CSCI 503/490, Fall 2024 Northern Illinois University 2



Quiz

1. What type of statement did Dijkstra “consider harmful”?
(@) do-while
(o) break
(C) goto

(d) continue

D. Koop, CSCI 503/490, Fall 2024 Northern Illinois University 3



Quiz

2. Whatdoes 4 + 9 / 2 - 2 evaluate to?
a) 4

)
)
)

=

C

(
(
(
(0

PBGWO\
U"IU"I

D. Koop, CSCI 503/490, Fall 2024 Northern Illinois University 4



Quiz

3. Which expression computes whether a Is greater than 2 and b Is not equal
to 100007
@ a > 2 && b !'= 10000
(b)a > 2 and b is not 10000
(C) not (a <= 2 or b == 10000)
d) !'(a <=2 || b == 10000)

D. Koop, CSCI 503/490, Fall 2024 Northern Illinois University 5



Quiz

4. Which is an invalid string”
'""'"Tt's a dog's life'''
'Tt\'s a dog\'s life'

"ITt's a dog's 1life"

Q O O ®

Hnn:tvs a dOg'S ‘|-i-:'ev LI |

D. Koop, CSCI 503/490, Fall 2024 Northern Illinois University 6



Quiz

5. Which is not a valid python identifier?

e

a) mafiana

p) in order list
C) 1

d)

int

(
(
(
(

3bears

D. Koop, CSCI 503/490, Fall 2024 Northern Illinois University 7



f, else, elif, pass

e 1f a < 10: e 1f a < 10:
print ("Small") print ("Small")
else: elif a < 100:

if a < 100: print ("Medium")
print ("Medium") elif a < 1000:

else: print ("Large")
1f a < 1000: else:

print ("Large") print ("X-Large")

else:

print ("X-Large")

¢ [ndentation is critical so else-if branches can become unwieldy (elif helps)
e Remember colons and indentation
®* pass can be used for an empty block

D. Koop, CSCI 503/490, Fall 2024 Northern Illinois University 8




while, break, continue

e while <boolean expression>:
<loop-block>

e Condition is checked at the beginning and before each repeat
* break: Immediately exit the current loop

* continue: Stop loop execution and go back to the top of the loop, checking
the condition again
e while d > O:

a = get next 1nput ()
1if a > 100:
break
1f a < 10:
continue
d —= a

D. Koop, CSCI 503/490, Fall 2024 Northern Illinois University 9



The Go To Statement Debate

GG To Statement Cﬂnsldered Harmful L ~ dynamie progress is only characterized when we also give to which

- call of the procedure we refer. With the inclusion of pmcedures
3 Key Words and Phrﬂ.see go to statement; jump mstructmn we can characterize the pmgreas of the process via a sequence of
_-__ branch instruction, conditional clause, alternﬂ.twe clause, repet- . . indices, the length of this sequence being equal to the
~  itive clause, program mteIltgtbthty, program sequencing i dynamic depth of procedure-éalling. el -
: . CR CatEgurles 4.22,5.23,5.2¢ PR DRERORE T Let us now consider repetition clauses (like, while B I'Epeat A
- EDITOR: | SR A0 . . or repeat A untll B) Lugmally speakmg, such clausea are now -
- or 4 number of vears gqve he .';'. ] he ob atinn | aT:

. became eonvmeed that the go to statement shoutd oe abohshed frem all

'hlgher level’ programming languages... Ihe go to statement as it stands Is
just too primitive; it Is too much an invitation to make a mess of one's
pregram )

been urged to do so. | | S . - namic index,” inexorably counting the ordinal number of the
ti My first remark is that, a]thﬂugh the programmer’s activity mrreapondmg current repetition. As repetition clauses (just as
- ends when he has constructed a correct program, the process  procedure calls) may be applied nestedly, we find that now the
-~ taking place under control of his program is the true subject = progress of the process can always be uniquely characterlzed by a
~ matter of his activity, for if is this process that has to accomplish =~ (mixed) sequence of textual aud/ur dynamie 1ndices. -
- the desired'etTect;'it_-'ia this process that in its dynamic behavior =~ The main point is that the values of these indices are nutmde
~ has to satisfy the desired specifications. Yet, once the program has ~ programmer’s control; they are generated (either by the write- up -
~ been made, the “making”’ of the currespundmg process is dele- of his program or by the dynamic evolution of the process) whether
- gated to the machine. : Lo ~ he wishes or not. They provide independent conrdmates in which
s M~v qecand reamarlk i fhuf anr intallantinal mamrans arn b hos tn dacnwiha tha meneaann Ak bl mmAanane ' ;o [DleStra 1968]

D. Koop, CSCI 503/490, Fall 2024 Northern Illinois University 10



| oop Styles

¢ | oop-and-a-Half

d = get data() priming rd
while check(d) :
do stuftf
d = get data () e Assignment Expression (Walrus)
e [nfinite-Loop-Break while check(d := get datal()):
do stuff

while True:
d = get data ()
1f check(d) :
break
do stutftt

I%I Northern Illinois University 11

D. Koop, CSCI 503/490, Fall 2024



Assignment 2

e Due next Wednesday
e Python control flow and functions

D. Koop, CSCI 503/490, Fall 2024 Northern Illinois University =~ 12


http://faculty.cs.niu.edu/~dakoop/cs503-2024fa/assignment2.html

| ooping Errors

o while loop - summing the numbers 1 to 10
n = 10
cur sum = 0
sum of n numbers

1 =0
while 1 <= n:

1 =1 + 1

Cur sum = Ccur sum + 1

print ("The sum of the numbers from 1 to", n, "1is ", cur sum)

[The Carpentries, CC-BY 4.0]

D. Koop, CSCI 503/490, Fall 2024 Northern Illinois University 13


https://datacarpentry.org/python-socialsci/03-control-structures/index.html

| ooping Errors

o while loop - summing the numbers 1 to 10
n = 10
cur sum = 0
sum of n numbers
1 =0

while 1 <= n:
cur sum = cur sum + 1
1 =1 4+ 1

print ("The sum of the numbers from 1 to", n, "1is ", cur sum)

[The Carpentries, CC-BY 4.0]

D. Koop, CSCI 503/490, Fall 2024 Northern Illinois University 14


https://datacarpentry.org/python-socialsci/03-control-structures/index.html

| ooping Errors

o while loop - summing the numbers 1 to 10
n = 10
cur sum = 0
sum of n numbers
1 =0
while 1 < n:

cur sum
1 =1 + 1

cur sum + 1

print ("The sum of the numbers from 1 to", n, "1is ", cur sum)

[The Carpentries, CC-BY 4.0]

D. Koop, CSCI 503/490, Fall 2024 Northern Illinois University 15


https://datacarpentry.org/python-socialsci/03-control-structures/index.html

~or Loop

o for loops In Python are really for-each l0ops
e Always an element that Is the current element
- Can be used to iterate through iterables (containers, generators, strings)

- Can be used for counting

e fOor 1 1n range(d):
print (1) 0 1 2 3 4

e range (5) generates the numbers 0,1,2,3,4

D. Koop, CSCI 503/490, Fall 2024 Northern Illinois University 16




Range

e Python has lists which allow enumeration of all possibllities: [0,1,2,3,4]

e Can use these Iin for loops

.':Or l ln [01’12/314]:
print (i) 01 2 3 4

* but this is less efficient than range (which is a generator)

e fOr 1 1n range(d):
print (1) 0 1 2 3 4

e | ist must be stored, range doesn't require storage

e Printing a range doesn't work as expected:
- print (range (5)) prints "range (0, 5)"

- print (list (range (5)) prints "[0, 1, 2, 3, 41"

D. Koop, CSCI 503/490, Fall 2024 Northern Illinois University 17



Range

o Different method signatures
- range(n) > 0, 1, .., n-1
- range (start, end) —™ start, start + 1, .., end - 1

- range (start, end, step)
— start, start + step, .. < end

e Negative steps:
- range (0,4,-1) <nothing>
- range (4,0, -1) 4 3 2 1

e Hoating-point arguments are not allowed

D. Koop, CSCI 503/490, Fall 2024 Northern Illinois University 18




| ooping Errors

o for loop - summing the numbers 1 to 10
n = 10
cur sum = 0

for 1 1n range(n):
cCur sum += 1

—

print ("The sum of the numbers from 1 to", n, "1is ", cur sum)

. Koop, CSCI 503/490, Fall 2024 Northern Illinois University 19




| ooping Errors

o for loop - summing the numbers 1 to 10
n = 10
cur sum = 0

for 1 1n range(nt+l):
cCur sum += 1

—

print ("The sum of the numbers from 1 to", n, "1is ", cur sum)

. Koop, CSCI 503/490, Fall 2024 Northern Illinois University 20




| ooping Errors

o for loop - summing the numbers 1 to 10
n = 10
cur sum = 0

for 1 1n range(l, n+1l):
cCur sum += 1

—

print ("The sum of the numbers from 1 to", n, "1is ", cur sum)

. Koop, CSCI 503/490, Fall 2024 Northern Illinois University 21




Functions

D. Koop, CSCI 503/490, Fall 2024 Northern Illinois University 22



Functions

e Call a function £: £ (3) or £(3,4) or ... depending on number of parameters

e def <function—-name> (<parameter-names>) :
"""Optional docstring documenting the function"""
<function-body>

e Jdef sStands for function definition

e docstring is convention used for documentation
e Remember the colon and indentation
e Parameter list can be empty: def £ () :

Hh

D. Koop, CSCI 503/490, Fall 2024 Northern Illinois University =~ 23




Functions

e Use return to return a value

e def <function—-name> (<parameter-names>) :
do stuftf
return res

e Can return more than one value using commas

e def <functilon-name> (<parameter-names>) :
do stu
return resl, res?

o~

e Use simultaneous assignment when calling:
- a, b = do something(l,?2,5)

e |f there Is no return value, the function returns None (a special value)

D. Koop, CSCI 503/490, Fall 2024 Northern Illinois University =~ 24




Default Values & Keyword Arguments

e Can add =<value> to parameters

—

e def rectangle area(width=30, height=20):
return width * height

o All of these work:

- rectangle area () 000
- rectangle area(10) 200
- rectangle area (10, 50) 200

¢ |f the user does not pass an argument for that parameter, the parameter Is
set to the default value

e Can also pass parameters using <name>=<value> (keyword arguments):
- rectangle area (height=50) 1500

D. Koop, CSCI 503/490, Fall 2024 Northern Illinois University =~ 25




Return

e As many return statements as you want
e Always end the function and go back to the calling code

e Returns do not need to match one type/structure (generally not a good idea)
e def f(a,b):
1f a < 0:
return -1
while b > 10:

return "BAD"
return b

D. Koop, CSCI 503/490, Fall 2024 Northern Illinois University =~ 26




Functions

D. Koop, CSCI 503/490, Fall 2024 Northern Illinois University 27



Functions

e Call a function £: £ (3) or £(3,4) or ... depending on number of parameters

e def <function—-name> (<parameter-names>) :
"""Optional docstring documenting the function"""
<function-body>

e Jdef sStands for function definition

e docstring is convention used for documentation
e Remember the colon and indentation
e Parameter list can be empty: def £ () :

Hh

D. Koop, CSCI 503/490, Fall 2024 Northern Illinois University =~ 28




Functions

e Use return to return a value

e def <function—-name> (<parameter-names>) :
do stuftf
return res

e Can return more than one value using commas

e def <functilon-name> (<parameter-names>) :
do stu
return resl, res?

o~

e Use simultaneous assignment when calling:
- a, b = do something(l,?2,5)

e |f there Is no return value, the function returns None (a special value)

D. Koop, CSCI 503/490, Fall 2024 Northern Illinois University =~ 29




Default Values & Keyword Arguments

e Can add =<value> to parameters

—

e def rectangle area(width=30, height=20):
return width * height

o All of these work:

- rectangle area () 000
- rectangle area(10) 200
- rectangle area (10, 50) 200

¢ |f the user does not pass an argument for that parameter, the parameter Is
set to the default value

e Can also pass parameters using <name>=<value> (keyword arguments):
- rectangle area (height=50) 1500

D. Koop, CSCI 503/490, Fall 2024 Northern Illinois University 30




Return

e As many return statements as you want
e Always end the function and go back to the calling code

e Returns do not need to match one type/structure (generally not a good idea)
e def f(a,b):
1f a < 0:
return -1
while b > 10:

return "BAD"
return b

D. Koop, CSCI 503/490, Fall 2024 Northern Illinois University 31




SEqUENCES

e Strings are sequences of characters: "abcde™
e | ists are also sequences: [1, 2, 3, 4, 5]
e + [uples: (1, 2, 3, 4, 5)

D. Koop, CSCI 503/490, Fall 2024 Northern Illinois University = 32



| IStS

e Definingalist: my 1ist = [0, 1, 2, 3, 4]

e But lists can store different types:
- my list = [0, "a", 1.34]

* |ncluding other lists:
- my list = [0, "a", 1.34, [1, 2, 3]]

D. Koop, CSCI 503/490, Fall 2024 Northern Illinois University = 33




Hsts Tuples

e Defining a tuple: my tuple = (0, 1, 2, 3, 4)

e But tuples can store different types:
- my tuple = (0, "a", 1.34)

* |ncluding other tuples:
- my tuple = (0, "a", 1.34, (1, 2, 3))

e How do you define a tuple with one element”

D. Koop, CSCI 503/490, Fall 2024 Northern Illinois University 34



Hsts Tuples

e Defining a tuple: my tuple = (0, 1, 2, 3, 4)

e But tuples can store different types:
- my tuple = (0, "a", 1.34)

* |ncluding other tuples:
- my tuple = (0, "a", 1.34, (1, 2, 3))

e How do you define a tuple with one element”
- my tuple = (1) doesn't work

- my tuple = (1,) add trailing comma

D. Koop, CSCI 503/490, Fall 2024 Northern Illinois University 35



List Operations

® Not like vectors or matrices!

e Concatenate: [1, 2] + [3, 4] (1,2,3,4]
e Repeat: [1,2] * 3 (1,2,1,2,1,2]

e length:my list = [1,2]; len(my list) 2

D. Koop, CSCI 503/490, Fall 2024 Northern Illinois University 36




Hst Sequence Operations

e Concatenate: [1, 21 + [3, 4] [(1,2,3,4]
e Repeat: [1,2] * 3 (1,2,1,2,1,2]

® Length: my list = [1,2]; len(my list) %

e Concatenate: (1, 2) + (3, 4) (1,2,3,4)
e Repeat: (1,2) * 3 (1,2,1,2,1,2)

e [ ength: my tuple = (1,2); len(my tuple) 2

e Concatenate: "ab" + "cd" # "abcd"
e Repeat: "ab" * 3 "ababab"
e length: my str = "ab"; len(my str) 2

D. Koop, CSCI 503/490, Fall 2024 Northern Illinois University 37



Seqguence Indexing

e Square brackets are used to pull out an element of a sequence
e \Ve always start counting at zero!

e my str = "abcde"; my str[0] "a"
enmy list = [1,2,3,4,5]; my list[2Z. 3
e my tuple = (1,2,3,4,5); my tuple[5] IndexError

o 1 2 3 4
HEEEE

D. Koop, CSCI 503/490, Fall 2024 Northern Illinois University = 38



