
Programming Principles in Python (CSCI 503/490)

Syntax & Types

Dr. David Koop

(some slides adapted from Dr. Reva Freedman)

D. Koop, CSCI 503/490, Fall 2024

Administrivia
• Course Web Site
• TA: Pavana Venkata Hari Bhavaraju (Pavan)
• Syllabus
- Plagiarism
- Accommodations

• Assignments
• Tests: 2 (Oct. 2, Nov. 11) and Final (Dec. 11)
• Course is offered to both undergraduates (CS 490) and graduates (CS 503)
- Grad students have extra topics, exam questions, assignment tasks

2D. Koop, CSCI 503/490, Fall 2024

http://faculty.cs.niu.edu/~dakoop/cs503-2024fa

Office Hours & Email
• TA office hours are currently virtual but will be held in person in TA Offices
- Tu 10am-1pm, Th 1-4pm

• Prof. Koop's office hours will be held in person in PM 461
- M: 1:45-3:00pm, W: 10:45am-12:00pm, or by appointment
- You do not need an appointment to stop by during scheduled office hours,
- If you wish to meet virtually, please schedule an appointment
- If you need an appointment, please email me with details about what you

wish to discuss and times that would work for you
• Many questions can be answered via email. Please consider writing an

email before scheduling a meeting.

3D. Koop, CSCI 503/490, Fall 2024

Using Python & JupyterLab on Course Server
• https://tiger.cs.niu.edu/jupyter/
• Login with you Z-ID (lowercase z)
• You should have received an email with your password
• Advanced:
- Can add your own conda environments in your user directory

4D. Koop, CSCI 503/490, Fall 2024

https://tiger.cs.niu.edu/jupyter/

Using Python & JupyterLab Locally
• www.anaconda.com/download/
• Consider mamba (faster) and conda-forge
• Anaconda includes JupyterLab
• Use Python 3.12 (may have to install)
• Anaconda Navigator
- GUI application for managing Python

environment
- Can install packages & start JupyterLab

• Can also use the shell to do this:
- $ jupyter lab

- $ conda install <pkg_name>

5D. Koop, CSCI 503/490, Fall 2024

https://www.anaconda.com/download/
https://mamba.readthedocs.io/en/latest/
https://github.com/conda-forge/miniforge

Zen of Python
• Written in 1999 by T. Peters in a message to Python mailing list
• Attempt to channel Guido van Rossum's design principles
• 20 aphorisms, 19 written, 1 left for Guido to complete (never done)
• Archived as PEP 20
• Added as an easter egg to python (import this)
• Much to be deciphered, in no way a legal document
• Jokes embedded
• Commentary by A.-R. Janhangeer

6D. Koop, CSCI 503/490, Fall 2024

https://www.python.org/dev/peps/pep-0020/
https://www.codementor.io/@abdurrahmaanj/the-zen-of-python-as-related-by-masters-1adi3kuiwy

Explicit Code
• Goes along with complexity
• Bad:

def make_complex(*args):
 x, y = args
 return dict(**locals())

• Good
def make_complex(x, y):
 return {'x': x, 'y': y}

7

[The Hitchhiker's Guide to Python]
D. Koop, CSCI 503/490, Fall 2024

https://docs.python-guide.org/writing/style/#zen-of-python

Don't Repeat Yourself
• "Two or more, use a for" [Dijkstra]
• Rule of Three: [Roberts]
- Don't copy-and-paste more than once
- Refactor into methods

• Repeated code is harder to maintain
• Bad

f1 = load_file('f1.dat')
r1 = get_cost(f1)
f2 = load_file('f2.dat')
r2 = get_cost(f2)
f3 = load_file('f3.dat')
r3 = get_cost(f3)

8D. Koop, CSCI 503/490, Fall 2024

• Good
for i in range(1,4):
 f = load_file(f'f{i}.dat')
 r = get_cost(f)

Object-Oriented Programming
• Encapsulation (Cohesion): Put things together than go together
• Abstraction: Hide implementation details (API)
• Inheritance: Reuse existing work
• Polymorphism: Method reuse and strategies for calling and overloading

9D. Koop, CSCI 503/490, Fall 2024

Assignment 1
• Released last week, due Friday
• Updated wording on the types of annuities, equations are correct
• Goal: Become acquainted with Python using notebooks
• Make sure to follow instructions
- Name the submitted file a1.ipynb
- Put your name and z-id in the first cell
- Label each part of the assignment using markdown
- Make sure to produce output according to specifications

10D. Koop, CSCI 503/490, Fall 2024

https://faculty.cs.niu.edu/~dakoop/cs503-2024fa/assignment1.html

Modes of Computation
• Python is interpreted: you can run one line at a line without compiling
• Interpreter in the Shell
- Execute line by line
- Hard to structure loops
- Usually execute whole files (called scripts) and edit those files

• Notebook
- Richer results (e.g. images, tables)
- Can more easily edit past code
- Re-execute any cell, whenever

11D. Koop, CSCI 503/490, Fall 2024

Python Interpreter from the Shell
• On tiger, use conda init to make sure you are using the latest version of

python (the same version used by the notebook environment)
- bash
- conda init
- conda activate py3.12

• We will discuss this more later, but want to show how this works

12D. Koop, CSCI 503/490, Fall 2024

Python in a Notebook
• Richer results (e.g. images, tables)
• Can more easily edit past code
• Re-execute any cell, whenever

13D. Koop, CSCI 503/490, Fall 2024

Multiple Types of Output
• stdout: where print commands go
• stderr: where error messages go
• display: special output channel used to show rich outputs
• output: same as display but used to display the value of the last line of a cell

14D. Koop, CSCI 503/490, Fall 2024

Multiple Types of Output

15D. Koop, CSCI 503/490, Fall 2024

stdout

display

output

stderr

Print function
•print(“Welcome, Jane")

• Can also print variables:
name = "Jane"
print("Welcome,", name)

16D. Koop, CSCI 503/490, Fall 2024

Python Variables and Types
• No type declaration necessary
• Variables are names, not memory locations
a = 0
a = "abc"
a = 3.14159

• Don't worry about types, but think about types
• Strings are a type
• Integers are as big as you want them
• Floats can hold large numbers, too (double-precision)

17D. Koop, CSCI 503/490, Fall 2024

Python Strings
• Strings can be delimited by single or double quotes

- "abc" and 'abc' are exactly the same thing
- Easier use of quotes in strings: "Joe's" or 'He said "Stop!"'

• Triple quotes allow content to go across lines and preserves linebreaks
- """This is another
string"""

• String concatenation: "abc" + "def"
• Repetition: "abc" * 3
• Special characters: \n \t like Java/C++

18D. Koop, CSCI 503/490, Fall 2024

Python Math and String "Math"
• Standard Operators: +, -, *, /, %
• Division "does what you want" (new in v3)
- 5 / 2 = 2.5
- 5 // 2 = 2 # use // for integer division

• Shortcuts: +=, -=, *=
• No ++, --
• Exponentiation (Power): **
• Order of operations and parentheses: (4 - 3 - 1 vs. 4 - (3 - 1))
• "abc" + "def"

• "abc" * 3

19D. Koop, CSCI 503/490, Fall 2024

Comments in Python
• # for single-line comments
- everything after # is ignored
- a = 3 # this is ignored

- # this is all ignored
• Triple-quoted strings also used for comments (technically, any string can be)
- A literal string without assignment, etc. is basically a no-op
- """This is a string, often used as a comment"""

- """This string
has multiple
lines"""

20D. Koop, CSCI 503/490, Fall 2024

Identifiers
• A sequence of letters, digits, or underscores, but…
• Also includes unicode "letters", spacing marks, and decimals (e.g. Σ)
• Must begin with a letter or underscore (_)
• Why not a number?

21D. Koop, CSCI 503/490, Fall 2024

Identifiers
• A sequence of letters, digits, or underscores, but…
• Also includes unicode "letters", spacing marks, and decimals (e.g. Σ)
• Must begin with a letter or underscore (_)
• Why not a number? Ambiguity, 8j is a complex number, 8e27 is a float
• Case sensitive (a is different from A)
• Conventions:
- Identifiers beginning with an underscore (_) are reserved for system use
- Use underscores (a_long_variable), not camel-case (aLongVariable)
- Keep identifier names less than 80 characters

• Cannot be reserved words

22D. Koop, CSCI 503/490, Fall 2024

Reserved Words and Reassigning builtins
• Some words cannot serve as identifiers (called keywords in Python)

- import keyword
keyword.kwlist

- ['False', 'None', 'True', 'and', 'as', 'assert', 'async',
'await', 'break', 'class', 'continue', 'def', 'del',
'elif', 'else', 'except', 'finally', 'for', 'from',
'global', 'if', 'import', 'in', 'is', 'lambda', 'nonlocal',
'not', 'or', 'pass', 'raise', 'return', 'try', 'while',
'with', 'yield']

- False = True # SyntaxError

• Some other words (python's builtins) can, but this can cause problems
- int = 34
int("12") # TypeError

23D. Koop, CSCI 503/490, Fall 2024

Programming Principle: Use Meaningful Identifiers
• Show intention:
- Bad: var34
- Good: time_difference

• Easy pronunciation: Not egészségedre (perhaps ok if you're Hungarian)
• Simple but technical:
- Bad: in_order_list_of_jobs
- Good: job_queue

• Be consistent:
- Bad: user_list and groups
- Good: user_list and group_list

24D. Koop, CSCI 503/490, Fall 2024

Types
• Don't worry about types, but think about types
• Variables can "change types"

- a = 0
a = "abc"
a = 3.14159

• Actually, the name is being moved to a different value
• You can find out the type of the value stored at a variable v using type(v)
• Some literal types are determined by subtle differences

- 1 vs 1. (integer vs. float)
- 1.43 vs 1.43j (float vs. imaginary)
- '234' vs b'234' (string vs. byte string)

25D. Koop, CSCI 503/490, Fall 2024

Type Conversion
• Python converts integers to floats when types are mixed

- 1 + 3.4 # evaluates to 4.4 (float)

• Functions can return different types than inputs
- round(3.9) # evaluates to 4 (int)

• Can do explicit type conversion
- int(3.9) # evaluates to 3 (int)

- float(123) # evaluates to 123. (float)

- int("123") # evaluates to 123 (int)

- str(123) # evaluates to "123" (string)

26D. Koop, CSCI 503/490, Fall 2024

Numeric Precision
• Integers have infinite precision and are as big as you want them

- 93326215443944152681699238856266700490715968264381621468592
96389521759999322991560894146397615651828625369792082722375
8251185210916864000000000000000000000000

• Floats do not have infinite precision but still hold large numbers (double-precision)
- 9.33262154439441e+157

- Python keeps 17 significant digits
- Python by default only prints up to 12 (many times less)

• Python has support for infinite precision (Decimal)
• How might this work; how could you store a floating point number with

infinite precision using python?

27D. Koop, CSCI 503/490, Fall 2024

Expression Rules
• Involve
- Literals (1, "abc"),
- Variables (a, my_height), and
- Operators (+,-*,/,//,**)

• Spaces are irrelevant within an expression
- a + 34 # ok

• Standard precedence rules
- Parentheses, exponentiation, mult/div, add/sub
- Left to right at each level

• Also boolean expressions

28D. Koop, CSCI 503/490, Fall 2024

Assignment
• The = operator
• Can assign a literal, another variable, or any expression

- a = 34

- b = a

- c = (a + b) ** 2

• Cannot use this operator in the middle of an expression, like in C++
• However, Python 3.8 added a new operator (the "walrus") that allows this

29D. Koop, CSCI 503/490, Fall 2024

