Programming Principles in Python (CSCI 503/490)

Machine Learning

Dr. David Koop
Grammar of Graphics & Altair

- "Grammar of Graphics", L. Wilkinson
- "A Layered Grammar of Graphics" + ggplot, H. Wickham
- Vega: "Declarative language for creating, saving, and sharing interactive visualization designs"
- Vega-Lite: higher-level language than Vega, carefully crafted rules for defaults
- Altair: Python interface to Vega-Lite
 - "spend more time understanding your data and its meaning"
 - Specify the what, minimize the amount of code directing the how
 - Python can write JSON specification just as well as any other language
 - Bindings make it more Python-friendly, integrate with pandas, add support for Jupyter, etc.
Basic Example

- import altair as alt
 import pandas as pd
 data = pd.DataFrame({'x': [1,3,4,6,10],'y': [1,5,2,7,3]})
 alt.Chart(data).mark_line().encode(x='x', y='y')

- Easiest to use data from a pandas data frame
 - Another option is a csv or json file
 - Can support geo_interface, too

- Chart is the basic unit

- Mark: .mark_*() indicates the geometry created for each data item

- Encode: .encode() allows visual properties to be set to data attributes
Visual Marks

• **Marks** are the basic graphical elements in a visualization
• Marks classified by dimensionality:
 - Points
 - Lines
 - Areas
• Also can have surfaces, volumes
• Think of marks as a mathematical definition, or if familiar with tools like Adobe Illustrator or Inkscape, the path & point definitions
• Altair: area, bar, circle, geoshape, image, line, point, rect, rule, square, text, tick
 - Also compound marks: boxplot, errorband, errorbar
Encode via Visual Channels

- **Position**
 - Horizontal
 - Vertical
 - Both

- **Color**

- **Shape**

- **Tilt**

- **Size**
 - Length
 - Area
 - Volume

[Munzner (ill. Maguire), 2014]
Data Attributes and Altair Types

- **Categorical**
 - +
 - ●
 - □
 - △

- **Ordered**
 - → *Ordinal*
 - → *Quantitative*

[Munzner (ill. Maguire), 2014]
Data Attributes and Altair Types

- Categorical data = Nominal (N)
- Ordinal data = Ordinal (O)
- Quantitative data = Quantitative (Q)
- Temporal data = Temporal (T)

[Munzner (ill. Maguire), 2014]
Different Channels for Different Attribute Types

<table>
<thead>
<tr>
<th>Magnitude Channels: Ordered Attributes</th>
<th>Identity Channels: Categorical Attributes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position on common scale</td>
<td>Spatial region</td>
</tr>
<tr>
<td>Position on unaligned scale</td>
<td>Color hue</td>
</tr>
<tr>
<td>Length (1D size)</td>
<td>Motion</td>
</tr>
<tr>
<td>Tilt/angle</td>
<td>Shape</td>
</tr>
<tr>
<td>Area (2D size)</td>
<td></td>
</tr>
<tr>
<td>Depth (3D position)</td>
<td></td>
</tr>
<tr>
<td>Color luminance</td>
<td></td>
</tr>
<tr>
<td>Color saturation</td>
<td></td>
</tr>
<tr>
<td>Curvature</td>
<td></td>
</tr>
<tr>
<td>Volume (3D size)</td>
<td></td>
</tr>
</tbody>
</table>

Altair will use its rules to pick whether to use color hue or saturation based on the type.

[Munzner (ill. Maguire), 2014]
Altair Supports Concatenation, Layering, & Repetition

• Layering:
 - + Operator

• Concatenation:
 - Horizontal: | operator
 - Vertical: & operator

• Repetition
 - Use of .repeat for layout
 - Reference repeated variables in the encoding
Layering
Concatenation

[Improvise, Weaver, 2004]
Repetition
Seattle Weather: 2012-2015

Date

Maximum Daily Temperature (°C)

Count of Records

weather
- sun
- fog
- drizzle
- rain
- snow

precipitation
- 0
- 10
- 20
- 30
- 40
- 50

precipitation

Sun: 0
Fog: 10
Drizzle: 20
Rain: 30
Snow: 40

Seattle Weather: 2012-2015

Interaction

D. Koop, CSCI 503/490, Spring 2023
Assignment 8

- Due Today
- Data and Visualization
- Pokemon Data
Final Exam

- Wednesday, May 10, **10:00-11:50am** in PM 110
- **More comprehensive** than Test 2
- Expect questions from topics covered on Test 1 and 2
- Expect questions from the last four weeks of class (data, visualization, machine learning)
- Similar format
Machine Learning in Python
Tasks Machine Learning can Help With

• Identifying the zip code from handwritten digits on an envelope

• Detecting fraudulent activity in credit card transactions

• Identifying topics in a set of blog posts

• Grouping customers with similar preferences

[A. Müller & S. Guido, Introduction to Machine Learning with Python, J. Steppan (MNIST image)]
When to Use Machine Learning?

• ML is used when:
 - Human expertise does not exist (navigating on Mars)
 - Humans can’t explain their expertise (speech recognition)
 - Models must be customized (personalized medicine)
 - Models are based on huge amounts of data (genomics)

• ML isn’t always useful:
 - Calculating payroll...
Questions when building a machine learning solution

• What question(s) am I trying to answer? Do I think the data collected can answer that question?
• What is the best way to phrase my question(s) as a machine learning problem?
• Have I collected enough data to represent the problem I want to solve?
• What features of the data did I extract, and will these enable the right predictions?
• How will I measure success in my application?
Machine Learning Workflow Overview

1. Should I use ML on this problem?
 - Is there a pattern to detect? Can I solve it analytically? Do I have data?
2. Gather and organize data.
 - Preprocessing, cleaning, visualizing.
3. Establishing a baseline.
4. Choosing a model, loss, regularization, …
5. Optimization (could be simple, could be a Phd…).
6. Hyperparameter search.
7. Analyze performance & mistakes, and iterate back to step 4 (or 2).
Machine Learning

- Traditional Programming

 Data → Computer → Output
 Program → Computer

- Machine Learning

 Data → Computer → Program
 Output → Computer
Machine Learning

• Every machine learning algorithm has three components:
 - Representation
 - Evaluation
 - Optimization
Representation

- Decision trees
- Sets of rules / Logic programs
- Instances
- Graphical models (Bayes/Markov nets)
- Neural networks
- Support vector machines
- Model ensembles
- Etc.
Evaluation

- Accuracy
- Precision and recall
- Squared error
- Likelihood
- Posterior probability
- Cost / Utility
- Margin
- Entropy
- K-L divergence
- Etc.
Optimization

- Combinatorial optimization
 - E.g.: Greedy search
- Convex optimization
 - E.g.: Gradient descent
- Constrained optimization
 - E.g.: Linear programming
Types of Learning

• Supervised (inductive) learning
 - Training data includes desired outputs
• Unsupervised learning
 - Training data does not include desired outputs
• Semi-supervised learning
 - Training data includes a few desired outputs
• Reinforcement learning
 - Rewards from sequence of actions
Areas of Machine Learning

- Supervised learning
 - Decision tree induction
 - Rule induction
 - Instance-based learning
 - Bayesian learning
 - Neural networks
 - Support vector machines
 - Model ensembles
 - Learning theory

- Unsupervised learning
 - Clustering
 - Dimensionality reduction

[P. Domingos]
Supervised & Unsupervised Tasks

- Identifying the zip code from handwritten digits on an envelope (supervised)

```
0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2 2 2 2 2 2
3 3 3 3 3 3 3 3 3 3 3 3
4 4 4 4 4 4 4 4 4 4 4 4
5 5 5 5 5 5 5 5 5 5 5 5
6 6 6 6 6 6 6 6 6 6 6 6
7 7 7 7 7 7 7 7 7 7 7 7
8 8 8 8 8 8 8 8 8 8 8 8
9 9 9 9 9 9 9 9 9 9 9 9
```

- Detecting fraudulent activity in credit card transactions (supervised)
- Identifying topics in a set of blog posts (unsupervised)
- Grouping customers with similar preferences (unsupervised)

[A. Müller & S. Guido, Introduction to Machine Learning with Python, J. Steppan (MNIST image)]
Supervised Learning
Supervised Learning: Learned Algorithm (Fit)
Supervised Learning: Prediction
Supervised Learning: Prediction
Unsupervised Learning: Input

[Diagram: A scatter plot showing three distinct clusters of data points along the x and y axes, ranging from -10 to 7.5 on both axes.]
Unsupervised Learning: Output
Scikit-Learn

- Started as a Google Summer of Code project! (D. Cournapeau, 2007)
- Rewritten by scientists at INRIA (France) in 2010
- Written in Python using numpy, some optimizations using C (cython)
- The "gold standard" for machine learning in python
scikit-learn Principles

• Consistency: all objects share consistent, documented interface
• Inspection: parameters and parameter values determined by learning algorithms are stored and exposed as public attributes
• Non-proliferation of classes: only learning algs are classes, not datasets or parameters; easier to combine with other libraries
• Composition: create and reuse building blocks
• Sensible defaults: user-defined parameters should have meaningful defaults
scikit-learn entities

- Data: numpy matrices (also pandas series, data frames), process batches
- Estimators: all supervised & unsupervised algs implement common interface
 - estimator initialization does not do learning, only attaches parameters
 - fit does the learning, learned parameters exposed with trailing underscore
- Predictor: extends estimator with predict method
 - also provides score method to return value indicating prediction quality
- Transformer: help modify or filter data before learning
 - Preprocessing, feature selection, feature extraction, and dimensionality reduction via transform method
 - Can combine fit and transform via fit_transform

[L. Buitinck et al.]
Penguin Example
scikit-learn Template

1. Choose model class
2. Instantiate model
3. Fit model to data
4. Predict on new data

```python
from sklearn.naive_bayes import GaussianNB
model = GaussianNB()
model.fit(Xtrain, ytrain)
y_model = model.predict(Xtest)
```
5. (Check accuracy)

```python
from sklearn.metrics import accuracy_score
accuracy_score(ytest, y_model)
```
Deep Learning

• Deep learning is tied to neural networks, attempting to mimic how human neurons work together
• Hierarchical with multiple layers
• Usually takes advantage of GPUs
• Frameworks:
 - pytorch
 - TensorFlow
 - keras
 - theano