
Programming Principles in Python (CSCI 503/490)

Data

Dr. David Koop

D. Koop, CSCI 503/490, Spring 2023

Data Frame

2D. Koop, CSCI 503/490, Spring 2023

Data Frame

2D. Koop, CSCI 503/490, Spring 2023

Column Names

Data Frame

2D. Koop, CSCI 503/490, Spring 2023

Column Names

Index

Data Frame

2D. Koop, CSCI 503/490, Spring 2023

Column Names

Index

Column: df['Island']

Data Frame

2D. Koop, CSCI 503/490, Spring 2023

Column Names

Index

Column: df['Island']

Row: df.loc[2]

Data Frame

2D. Koop, CSCI 503/490, Spring 2023

Column Names

Index

Column: df['Island']

Cell: df.loc[341,'Species']

Row: df.loc[2]

Data Frame

2D. Koop, CSCI 503/490, Spring 2023

Column Names

Index

Column: df['Island']

Cell: df.loc[341,'Species']

Missing Data

Row: df.loc[2]

Filtering

3D. Koop, CSCI 503/490, Spring 2023

df[df['Culmen Length (mm)'] > 40]

Filtering

3D. Koop, CSCI 503/490, Spring 2023

df[df['Culmen Length (mm)'] > 40]

Reading and Writing Data
• Reading:

- df = pd.read_csv(fname)

• Writing
- df.to_csv(fname)

• Many options also possible on both
- sep: the separator (defaults to comma)
- skiprows: when reading, number of list of lines to skip
- index: set to None when writing if unimportant

• Also methods for other formats (json, parquet, sql)
• Methods are read_* and to_*

4D. Koop, CSCI 503/490, Spring 2023

Writing CSV data with pandas
• Basic: df.to_csv(<fname>)
• Change delimiter with sep kwarg:

- df.to_csv('example.dsv', sep='|')

• Change missing value representation
- df.to_csv('example.dsv', na_rep='NULL')

• Don't write row or column labels:
- df.to_csv('example.csv', index=False, header=False)

• Series may also be written to csv

5D. Koop, CSCI 503/490, Spring 2023

Derived Data
• Create new columns from existing columns

- r["PctFail"] = r['Fail'] / r['Total']

• Note that operations are computed in a vectorized manner
• Similarities to functional paradigm (map/filter):
- specify the operation once
- no loops
- interpreted as an operation on the entire column

6D. Koop, CSCI 503/490, Spring 2023

Avoid inplace

7

[J. Van den Bossche, 2023]
D. Koop, CSCI 503/490, Spring 2023

Split-Apply-Combine
• df.groupby('Island')[['Culmen Length (mm)',
 'Culmen Depth (mm)']].mean()

• df.groupby('Island').agg({'Culmen Length (mm)': 'mean',
 'Culmen Depth (mm)': 'mean'})

• df.groupby('Island').agg(
 cul_length=('Culmen Length (mm)', 'mean'),
 cul_depth=('Culmen Depth (mm)', 'mean'))

8D. Koop, CSCI 503/490, Spring 2023

Aggregation of time series data, a special use case of groupby, is referred
to as resampling in this book and will receive separate treatment in
Chapter 10.

GroupBy Mechanics
Hadley Wickham, an author of many popular packages for the R programming lan-
guage, coined the term split-apply-combine for talking about group operations, and I
think that’s a good description of the process. In the first stage of the process, data
contained in a pandas object, whether a Series, DataFrame, or otherwise, is split into
groups based on one or more keys that you provide. The splitting is performed on a
particular axis of an object. For example, a DataFrame can be grouped on its rows
(axis=0) or its columns (axis=1). Once this is done, a function is applied to each group,
producing a new value. Finally, the results of all those function applications are com-
bined into a result object. The form of the resulting object will usually depend on what’s
being done to the data. See Figure 9-1 for a mockup of a simple group aggregation.

Figure 9-1. Illustration of a group aggregation

Each grouping key can take many forms, and the keys do not have to be all of the same
type:

• A list or array of values that is the same length as the axis being grouped

• A value indicating a column name in a DataFrame

250 | Chapter 9: Data Aggregation and Group Operations

Split-Apply-Combine

9

[W. McKinney, Python for Data Analysis]
D. Koop, CSCI 503/490, Spring 2023

Different Data Layouts

10

[H. Wickham, 2014]
D. Koop, CSCI 503/490, Spring 2023

Journal of Statistical Software 3

2.1. Data structure

Most statistical datasets are rectangular tables made up of rows and columns. The columns
are almost always labelled and the rows are sometimes labelled. Table 1 provides some data
about an imaginary experiment in a format commonly seen in the wild. The table has two
columns and three rows, and both rows and columns are labelled.

treatmenta treatmentb

John Smith — 2
Jane Doe 16 11
Mary Johnson 3 1

Table 1: Typical presentation dataset.

There are many ways to structure the same underlying data. Table 2 shows the same data
as Table 1, but the rows and columns have been transposed. The data is the same, but the
layout is di↵erent. Our vocabulary of rows and columns is simply not rich enough to describe
why the two tables represent the same data. In addition to appearance, we need a way to
describe the underlying semantics, or meaning, of the values displayed in table.

John Smith Jane Doe Mary Johnson

treatmenta — 16 3
treatmentb 2 11 1

Table 2: The same data as in Table 1 but structured di↵erently.

2.2. Data semantics

A dataset is a collection of values, usually either numbers (if quantitative) or strings (if
qualitative). Values are organised in two ways. Every value belongs to a variable and an
observation. A variable contains all values that measure the same underlying attribute (like
height, temperature, duration) across units. An observation contains all values measured on
the same unit (like a person, or a day, or a race) across attributes.

Table 3 reorganises Table 1 to make the values, variables and obserations more clear. The
dataset contains 18 values representing three variables and six observations. The variables
are:

1. person, with three possible values (John, Mary, and Jane).

2. treatment, with two possible values (a and b).

3. result, with five or six values depending on how you think of the missing value (-, 16,
3, 2, 11, 1).

The experimental design tells us more about the structure of the observations. In this exper-
iment, every combination of of person and treatment was measured, a completely crossed
design. The experimental design also determines whether or not missing values can be safely

Journal of Statistical Software 3

2.1. Data structure

Most statistical datasets are rectangular tables made up of rows and columns. The columns
are almost always labelled and the rows are sometimes labelled. Table 1 provides some data
about an imaginary experiment in a format commonly seen in the wild. The table has two
columns and three rows, and both rows and columns are labelled.

treatmenta treatmentb

John Smith — 2
Jane Doe 16 11
Mary Johnson 3 1

Table 1: Typical presentation dataset.

There are many ways to structure the same underlying data. Table 2 shows the same data
as Table 1, but the rows and columns have been transposed. The data is the same, but the
layout is di↵erent. Our vocabulary of rows and columns is simply not rich enough to describe
why the two tables represent the same data. In addition to appearance, we need a way to
describe the underlying semantics, or meaning, of the values displayed in table.

John Smith Jane Doe Mary Johnson

treatmenta — 16 3
treatmentb 2 11 1

Table 2: The same data as in Table 1 but structured di↵erently.

2.2. Data semantics

A dataset is a collection of values, usually either numbers (if quantitative) or strings (if
qualitative). Values are organised in two ways. Every value belongs to a variable and an
observation. A variable contains all values that measure the same underlying attribute (like
height, temperature, duration) across units. An observation contains all values measured on
the same unit (like a person, or a day, or a race) across attributes.

Table 3 reorganises Table 1 to make the values, variables and obserations more clear. The
dataset contains 18 values representing three variables and six observations. The variables
are:

1. person, with three possible values (John, Mary, and Jane).

2. treatment, with two possible values (a and b).

3. result, with five or six values depending on how you think of the missing value (-, 16,
3, 2, 11, 1).

The experimental design tells us more about the structure of the observations. In this exper-
iment, every combination of of person and treatment was measured, a completely crossed
design. The experimental design also determines whether or not missing values can be safely

4 Tidy Data

dropped. In this experiment, the missing value represents an observation that should have
been made, but wasn’t, so it’s important to keep it. Structural missing values, which represent
measurements that can’t be made (e.g., the count of pregnant males) can be safely removed.

name trt result

John Smith a —
Jane Doe a 16
Mary Johnson a 3
John Smith b 2
Jane Doe b 11
Mary Johnson b 1

Table 3: The same data as in Table 1 but with variables in columns and observations in rows.

For a given dataset, it’s usually easy to figure out what are observations and what are variables,
but it is surprisingly di�cult to precisely define variables and observations in general. For
example, if the columns in the Table 1 were height and weight we would have been happy
to call them variables. If the columns were height and width, it would be less clear cut, as
we might think of height and width as values of a dimension variable. If the columns were
home phone and work phone, we could treat these as two variables, but in a fraud detection
environment we might want variables phone number and number type because the use of one
phone number for multiple people might suggest fraud. A general rule of thumb is that it is
easier to describe functional relationships between variables (e.g., z is a linear combination
of x and y, density is the ratio of weight to volume) than between rows, and it is easier
to make comparisons between groups of observations (e.g., average of group a vs. average of
group b) than between groups of columns.

In a given analysis, there may be multiple levels of observation. For example, in a trial of new
allergy medication we might have three observational types: demographic data collected from
each person (age, sex, race), medical data collected from each person on each day (number
of sneezes, redness of eyes), and meterological data collected on each day (temperature,
pollen count).

2.3. Tidy data

Tidy data is a standard way of mapping the meaning of a dataset to its structure. A dataset is
messy or tidy depending on how rows, columns and tables are matched up with observations,
variables and types. In tidy data:

1. Each variable forms a column.

2. Each observation forms a row.

3. Each type of observational unit forms a table.

This is Codd’s 3rd normal form (Codd 1990), but with the constraints framed in statistical
language, and the focus put on a single dataset rather than the many connected datasets
common in relational databases. Messy data is any other other arrangement of the data.

Initial Data

Transpose

Tidy Data

Journal of Statistical Software 11

id year month element d1 d2 d3 d4 d5 d6 d7 d8

MX17004 2010 1 tmax — — — — — — — —
MX17004 2010 1 tmin — — — — — — — —
MX17004 2010 2 tmax — 27.3 24.1 — — — — —
MX17004 2010 2 tmin — 14.4 14.4 — — — — —
MX17004 2010 3 tmax — — — — 32.1 — — —
MX17004 2010 3 tmin — — — — 14.2 — — —
MX17004 2010 4 tmax — — — — — — — —
MX17004 2010 4 tmin — — — — — — — —
MX17004 2010 5 tmax — — — — — — — —
MX17004 2010 5 tmin — — — — — — — —

Table 11: Original weather dataset. There is a column for each possible day in the month. Columns
d9 to d31 have been omitted to conserve space.

id date element value

MX17004 2010-01-30 tmax 27.8
MX17004 2010-01-30 tmin 14.5
MX17004 2010-02-02 tmax 27.3
MX17004 2010-02-02 tmin 14.4
MX17004 2010-02-03 tmax 24.1
MX17004 2010-02-03 tmin 14.4
MX17004 2010-02-11 tmax 29.7
MX17004 2010-02-11 tmin 13.4
MX17004 2010-02-23 tmax 29.9
MX17004 2010-02-23 tmin 10.7

(a) Molten data

id date tmax tmin

MX17004 2010-01-30 27.8 14.5
MX17004 2010-02-02 27.3 14.4
MX17004 2010-02-03 24.1 14.4
MX17004 2010-02-11 29.7 13.4
MX17004 2010-02-23 29.9 10.7
MX17004 2010-03-05 32.1 14.2
MX17004 2010-03-10 34.5 16.8
MX17004 2010-03-16 31.1 17.6
MX17004 2010-04-27 36.3 16.7
MX17004 2010-05-27 33.2 18.2

(b) Tidy data

Table 12: (a) Molten weather dataset. This is almost tidy, but instead of values, the element column
contains names of variables. Missing values are dropped to conserve space. (b) Tidy weather dataset.
Each row represents the meteorological measurements for a single day. There are two measured
variables, minimum (tmin) and maximum (tmax) temperature; all other variables are fixed.

Solution: Melting + Pivot

11

[H. Wickham, 2014]
D. Koop, CSCI 503/490, Spring 2023

Assignment 7
• Musical Artists Datasets
• Downloading and uncompressing files
• Finding files using OS libraries
• Load per-artist numpy arrays, each saved in the .npy format
• Store per-month dataframes, each in a csv file
• Issue with r.e.m..npy

12D. Koop, CSCI 503/490, Spring 2023

https://faculty.cs.niu.edu/~dakoop/cs503-2023fa/assignment7.html

13

Food Inspections Example

D. Koop, CSCI 503/490, Spring 2023

String Methods
• Can do many of the same methods used for single strings on entire columns
• Requires .str prefix before calling the method

- violations.value.str.strip().str.split(' - Comments:')

• Also helps when extracting from a list
- comments.str[1]

14D. Koop, CSCI 503/490, Spring 2023

See Table 7-3 for a listing of some of Python’s string methods.

Regular expressions can also be used with many of these operations, as you’ll see.

Table 7-3. Python built-in string methods
Argument Description
count Return the number of non-overlapping occurrences of substring in the string.
endswith Returns True if string ends with su!x.
startswith Returns True if string starts with pre"x.
join Use string as delimiter for concatenating a sequence of other strings.
index Return position of "rst character in substring if found in the string; raises ValueError if not found.
find Return position of "rst character of !rst occurrence of substring in the string; like index, but returns –1

if not found.
rfind Return position of "rst character of last occurrence of substring in the string; returns –1 if not found.
replace Replace occurrences of string with another string.
strip,
rstrip,
lstrip

Trim whitespace, including newlines; equivalent to x.strip() (and rstrip, lstrip, respectively)
for each element.

split Break string into list of substrings using passed delimiter.
lower Convert alphabet characters to lowercase.
upper Convert alphabet characters to uppercase.
casefold Convert characters to lowercase, and convert any region-speci"c variable character combinations to a

common comparable form.
ljust,
rjust

Left justify or right justify, respectively; pad opposite side of string with spaces (or some other "ll
character) to return a string with a minimum width.

Regular Expressions
Regular expressions provide a flexible way to search or match (often more complex)
string patterns in text. A single expression, commonly called a regex, is a string
formed according to the regular expression language. Python’s built-in re module is
responsible for applying regular expressions to strings; I’ll give a number of examples
of its use here.

The art of writing regular expressions could be a chapter of its own
and thus is outside the book’s scope. There are many excellent tuto‐
rials and references available on the internet and in other books.

The re module functions fall into three categories: pattern matching, substitution,
and splitting. Naturally these are all related; a regex describes a pattern to locate in the
text, which can then be used for many purposes. Let’s look at a simple example:

7.3 String Manipulation | 213

String Methods

15

[W. McKinney, Python for Data Analysis]
D. Koop, CSCI 503/490, Spring 2023

Support for Datetime
• Python has datetime library to support dates and times
• pandas has a Timestamp data type that functions somewhat similarly
• Pandas can convert timestamps

- pd.to_datetime: versatile, can often guess format
• Like string methods, also a .dt accessor for datetime methods/properties
• With a timestamp, filtering based on datetimes becomes easier

- df[df['Inspection Date'] > '2021']

16D. Koop, CSCI 503/490, Spring 2023

Method chaining in pandas
• Tom Augspurger's post
• Effective Pandas book by Matt Harrison
• Functions written for chaining, and pipe allows custom functions
• def read(fp):

 df = (pd.read_csv(fp)
 .rename(columns=str.lower)
 .drop('unnamed: 36', axis=1)
 .pipe(extract_city_name)
 .pipe(time_to_datetime, ['dep_time', 'arr_time',
 'crs_arr_time', 'crs_dep_time'])
 .assign(fl_date=lambda x: pd.to_datetime(x['fl_date']),
 dest=lambda x: pd.Categorical(x['dest']),
 origin=lambda x: pd.Categorical(x['origin']),
 tail_num=lambda x: pd.Categorical(x['tail_num']),
 unique_carrier=lambda x: pd.Categorical(x['unique_carrier']),
 cancellation_code=lambda x: pd.Categorical(x['cancellation_code'])))
 return df

17D. Koop, CSCI 503/490, Spring 2023

https://tomaugspurger.github.io/method-chaining
https://store.metasnake.com/effective-pandas-book

Example: Inspect Intermediate Results
• def csnap(df, fn=lambda x: x.shape, msg=None):
 """ Custom Help function to print things in method chaining.
 Returns back the df to further use in chaining.
 """
 if msg:
 print(msg)
 display(fn(df))
 return df

• wine.pipe(csnap) # display data frame
 .rename(columns={"color_intensity": "ci"})
 .assign(color_filter=lambda x: np.where(x.hue > 1, 1, 0))
 .pipe(csnap) # display data frame
 …

18D. Koop, CSCI 503/490, Spring 2023

