
Programming Principles in Python (CSCI 503/490)

Data

Dr. David Koop

D. Koop, CSCI 503/490, Spring 2023

 [0.1913, 0.4544, 0.4519, 0.5535],
 [0.5994, 0.8174, -0.9297, -1.2564]])

Figure 4-2. Two-dimensional array slicing

Suppose each name corresponds to a row in the data array and we wanted to select all
the rows with corresponding name 'Bob'. Like arithmetic operations, comparisons
(such as ==) with arrays are also vectorized. Thus, comparing names with the string
'Bob' yields a boolean array:

In [87]: names == 'Bob'
Out[87]: array([True, False, False, True, False, False, False], dtype=bool)

This boolean array can be passed when indexing the array:

In [88]: data[names == 'Bob']
Out[88]:
array([[-0.048 , 0.5433, -0.2349, 1.2792],
 [2.1452, 0.8799, -0.0523, 0.0672]])

The boolean array must be of the same length as the axis it’s indexing. You can even
mix and match boolean arrays with slices or integers (or sequences of integers, more
on this later):

In [89]: data[names == 'Bob', 2:]
Out[89]:
array([[-0.2349, 1.2792],

86 | Chapter 4: NumPy Basics: Arrays and Vectorized Computation

numpy Array Slicing
• Indexing is similar to lists
- Even in 2D
- arr[2][2] same as arr[2,2]

• Slicing is a bit different:
- Slices are views
- Dimensionality unchanged with pure slicing
- arr[1:3][:2] != arr[1:3,:2]

2

[W. McKinney, Python for Data Analysis]
D. Koop, CSCI 503/490, Spring 2023

pandas
• Contains high-level data structures and manipulation tools designed to make

data analysis fast and easy in Python
• Built on top of NumPy
• Built with the following requirements:
- Data structures with labeled axes (aligning data)
- Support time series data
- Do arithmetic operations that include metadata (labels)
- Handle missing data
- Add merge and relational operations

3D. Koop, CSCI 503/490, Spring 2023

Documentation
• pandas documentation is pretty good
• Lots of recipes on stackoverflow for particular data manipulations/queries

4D. Koop, CSCI 503/490, Spring 2023

https://pandas.pydata.org/docs/

Series
• A one-dimensional array (with a type) with an index
• Index defaults to numbers but can also be text (like a dictionary)
• Allows easier reference to specific items
• obj = pd.Series([7,14,-2,1])

• Basically two arrays: obj.values and obj.index
• Can specify the index explicitly and use strings
• obj2 = pd.Series([4, 7, -5, 3],
 index=['d', 'b', 'a', 'c'])

• Kind of like fixed-length, ordered dictionary + can create from a dictionary
• obj3 = pd.Series({'Ohio': 35000, 'Texas': 71000,
 'Oregon': 16000, 'Utah': 5000})

5D. Koop, CSCI 503/490, Spring 2023

Arithmetic
• Add, subtract, multiply, and divide are element-wise like numpy
• …but use labels to align
• …and missing labels lead to NaN (not a number) values

• also have .add, .subtract, … that allow fill_value argument
• obj3.add(obj4, fill_value=0)

6D. Koop, CSCI 503/490, Spring 2023

When only passing a dict, the index in the resulting Series will have the dict’s keys in
sorted order.

In [22]: states = ['California', 'Ohio', 'Oregon', 'Texas']

In [23]: obj4 = Series(sdata, index=states)

In [24]: obj4
Out[24]:
California NaN
Ohio 35000
Oregon 16000
Texas 71000
dtype: float64

In this case, 3 values found in sdata were placed in the appropriate locations, but since
no value for 'California' was found, it appears as NaN (not a number) which is con-
sidered in pandas to mark missing or NA values. I will use the terms “missing” or “NA”
to refer to missing data. The isnull and notnull functions in pandas should be used to
detect missing data:

In [25]: pd.isnull(obj4) In [26]: pd.notnull(obj4)
Out[25]: Out[26]:
California True California False
Ohio False Ohio True
Oregon False Oregon True
Texas False Texas True
dtype: bool dtype: bool

Series also has these as instance methods:

In [27]: obj4.isnull()
Out[27]:
California True
Ohio False
Oregon False
Texas False
dtype: bool

I discuss working with missing data in more detail later in this chapter.

A critical Series feature for many applications is that it automatically aligns differently-
indexed data in arithmetic operations:

In [28]: obj3 In [29]: obj4
Out[28]: Out[29]:
Ohio 35000 California NaN
Oregon 16000 Ohio 35000
Texas 71000 Oregon 16000
Utah 5000 Texas 71000
dtype: int64 dtype: float64

In [30]: obj3 + obj4
Out[30]:
California NaN
Ohio 70000

110 | Chapter 5: Getting Started with pandas

When only passing a dict, the index in the resulting Series will have the dict’s keys in
sorted order.

In [22]: states = ['California', 'Ohio', 'Oregon', 'Texas']

In [23]: obj4 = Series(sdata, index=states)

In [24]: obj4
Out[24]:
California NaN
Ohio 35000
Oregon 16000
Texas 71000
dtype: float64

In this case, 3 values found in sdata were placed in the appropriate locations, but since
no value for 'California' was found, it appears as NaN (not a number) which is con-
sidered in pandas to mark missing or NA values. I will use the terms “missing” or “NA”
to refer to missing data. The isnull and notnull functions in pandas should be used to
detect missing data:

In [25]: pd.isnull(obj4) In [26]: pd.notnull(obj4)
Out[25]: Out[26]:
California True California False
Ohio False Ohio True
Oregon False Oregon True
Texas False Texas True
dtype: bool dtype: bool

Series also has these as instance methods:

In [27]: obj4.isnull()
Out[27]:
California True
Ohio False
Oregon False
Texas False
dtype: bool

I discuss working with missing data in more detail later in this chapter.

A critical Series feature for many applications is that it automatically aligns differently-
indexed data in arithmetic operations:

In [28]: obj3 In [29]: obj4
Out[28]: Out[29]:
Ohio 35000 California NaN
Oregon 16000 Ohio 35000
Texas 71000 Oregon 16000
Utah 5000 Texas 71000
dtype: int64 dtype: float64

In [30]: obj3 + obj4
Out[30]:
California NaN
Ohio 70000

110 | Chapter 5: Getting Started with pandas

Oregon 32000
Texas 142000
Utah NaN
dtype: float64

Data alignment features are addressed as a separate topic.

Both the Series object itself and its index have a name attribute, which integrates with
other key areas of pandas functionality:

In [31]: obj4.name = 'population'

In [32]: obj4.index.name = 'state'

In [33]: obj4
Out[33]:
state
California NaN
Ohio 35000
Oregon 16000
Texas 71000
Name: population, dtype: float64

A Series’s index can be altered in place by assignment:

In [34]: obj.index = ['Bob', 'Steve', 'Jeff', 'Ryan']

In [35]: obj
Out[35]:
Bob 4
Steve 7
Jeff -5
Ryan 3
dtype: int64

DataFrame
A DataFrame represents a tabular, spreadsheet-like data structure containing an or-
dered collection of columns, each of which can be a different value type (numeric,
string, boolean, etc.). The DataFrame has both a row and column index; it can be
thought of as a dict of Series (one for all sharing the same index). Compared with other
such DataFrame-like structures you may have used before (like R’s data.frame), row-
oriented and column-oriented operations in DataFrame are treated roughly symmet-
rically. Under the hood, the data is stored as one or more two-dimensional blocks rather
than a list, dict, or some other collection of one-dimensional arrays. The exact details
of DataFrame’s internals are far outside the scope of this book.

While DataFrame stores the data internally in a two-dimensional for-
mat, you can easily represent much higher-dimensional data in a tabular
format using hierarchical indexing, a subject of a later section and a key
ingredient in many of the more advanced data-handling features in pan-
das.

Introduction to pandas Data Structures | 111

Filtering
• Same as with numpy arrays but allows use of column-based criteria

- data[data < 5] = 0

- data[data['three'] > 5]

• data < 5 → boolean data frame, can be used to select specific elements
• Multiple criteria, use &, |, and ~; remember parentheses!

- data[(data['three'] > 5) & (data['two'] < 10)]

• Also can check for missing values via isna()/isnull()/notnull()
- data[data['three'].notnull() & data['two'].isnull()]

7D. Koop, CSCI 503/490, Spring 2023

Assignment 7
• Musical Artists Datasets
• Downloading and uncompressing files
• Finding files using OS libraries
• Load per-artist numpy arrays, each saved in the .npy format
• Store per-month dataframes, each in a csv file

8D. Koop, CSCI 503/490, Spring 2023

https://faculty.cs.niu.edu/~dakoop/cs503-2023sp/assignment7.html

Data Frame
• A dictionary of Series (labels for each series)
• A spreadsheet with row keys (the index) and column headers
• Has an index shared with each series
• Allows easy reference to any cell
• df = DataFrame({'state': ['Ohio', 'Ohio', 'Ohio', 'Nevada'],
 'year': [2000, 2001, 2002, 2001],
 'pop': [1.5, 1.7, 3.6, 2.4]})

• Index is automatically assigned just as with a series but can be passed in as
well via index kwarg

• Can reassign column names by passing columns kwarg

9D. Koop, CSCI 503/490, Spring 2023

Data Frame

10D. Koop, CSCI 503/490, Spring 2023

Data Frame

10D. Koop, CSCI 503/490, Spring 2023

Column Names

Data Frame

10D. Koop, CSCI 503/490, Spring 2023

Column Names

Index

Data Frame

10D. Koop, CSCI 503/490, Spring 2023

Column Names

Index

Column: df['Island']

Data Frame

10D. Koop, CSCI 503/490, Spring 2023

Column Names

Index

Column: df['Island']

Row: df.loc[2]

Data Frame

10D. Koop, CSCI 503/490, Spring 2023

Column Names

Index

Column: df['Island']

Cell: df.loc[341,'Species']

Row: df.loc[2]

Data Frame

10D. Koop, CSCI 503/490, Spring 2023

Column Names

Index

Column: df['Island']

Cell: df.loc[341,'Species']

Missing Data

Row: df.loc[2]

Filtering

11D. Koop, CSCI 503/490, Spring 2023

df[df['Culmen Length (mm)'] > 40]

Filtering

11D. Koop, CSCI 503/490, Spring 2023

df[df['Culmen Length (mm)'] > 40]

DataFrame Index
• Similar to index for Series
• Immutable
• Can be shared with multiple structures (DataFrames or Series)
• in operator works with: 'Ohio' in df.index
• Can choose new index column(s) with set_index()
• reindex creates a new object with the data conformed to new index

- obj2 = obj.reindex(['a', 'b', 'c', 'd', 'e'])

- can fill in missing values in different ways

12D. Koop, CSCI 503/490, Spring 2023

Sorting
• sort_values method on series

- obj.sort_values()

• Missing values (NaN) are at the end by default (na_position controls, can be
first)

• sort_values on DataFrame:
- df.sort_values(<list-of-columns>)

- df.sort_values(by=['a', 'b'])

• Also a sort_index method to sort by the index
- df.sort_index()

13D. Koop, CSCI 503/490, Spring 2023

Statistics
• sum: column sums (axis=1 gives sums over rows)
• missing values are excluded unless the whole slice is NaN
• idxmax, idxmin are like argmax, argmin (return index)
• describe: shortcut for easy stats!

14D. Koop, CSCI 503/490, Spring 2023

 one two
a 1.40 NaN
b 8.50 -4.5
c NaN NaN
d 9.25 -5.8

Another type of method is neither a reduction nor an accumulation. describe is one
such example, producing multiple summary statistics in one shot:

In [204]: df.describe()
Out[204]:
 one two
count 3.000000 2.000000
mean 3.083333 -2.900000
std 3.493685 2.262742
min 0.750000 -4.500000
25% 1.075000 -3.700000
50% 1.400000 -2.900000
75% 4.250000 -2.100000
max 7.100000 -1.300000

On non-numeric data, describe produces alternate summary statistics:

In [205]: obj = Series(['a', 'a', 'b', 'c'] * 4)

In [206]: obj.describe()
Out[206]:
count 16
unique 3
top a
freq 8
dtype: object

See Table 5-10 for a full list of summary statistics and related methods.

Table 5-10. Descriptive and summary statistics

Method Description

count Number of non-NA values

describe Compute set of summary statistics for Series or each DataFrame column

min, max Compute minimum and maximum values

argmin, argmax Compute index locations (integers) at which minimum or maximum value obtained, respectively

idxmin, idxmax Compute index values at which minimum or maximum value obtained, respectively

quantile Compute sample quantile ranging from 0 to 1

sum Sum of values

mean Mean of values

median Arithmetic median (50% quantile) of values

mad Mean absolute deviation from mean value

var Sample variance of values

std Sample standard deviation of values

Summarizing and Computing Descriptive Statistics | 135

 one two
a 1.40 NaN
b 8.50 -4.5
c NaN NaN
d 9.25 -5.8

Another type of method is neither a reduction nor an accumulation. describe is one
such example, producing multiple summary statistics in one shot:

In [204]: df.describe()
Out[204]:
 one two
count 3.000000 2.000000
mean 3.083333 -2.900000
std 3.493685 2.262742
min 0.750000 -4.500000
25% 1.075000 -3.700000
50% 1.400000 -2.900000
75% 4.250000 -2.100000
max 7.100000 -1.300000

On non-numeric data, describe produces alternate summary statistics:

In [205]: obj = Series(['a', 'a', 'b', 'c'] * 4)

In [206]: obj.describe()
Out[206]:
count 16
unique 3
top a
freq 8
dtype: object

See Table 5-10 for a full list of summary statistics and related methods.

Table 5-10. Descriptive and summary statistics

Method Description

count Number of non-NA values

describe Compute set of summary statistics for Series or each DataFrame column

min, max Compute minimum and maximum values

argmin, argmax Compute index locations (integers) at which minimum or maximum value obtained, respectively

idxmin, idxmax Compute index values at which minimum or maximum value obtained, respectively

quantile Compute sample quantile ranging from 0 to 1

sum Sum of values

mean Mean of values

median Arithmetic median (50% quantile) of values

mad Mean absolute deviation from mean value

var Sample variance of values

std Sample standard deviation of values

Summarizing and Computing Descriptive Statistics | 135

Unique Values and Value Counts
• unique() returns an array with only the unique values (no index)

- s = Series(['c','a','d','a','a','b','b','c','c'])
s.unique() # array(['c', 'a', 'd', 'b'])

• Also nunique() to count number of unique entries
• Data Frames use drop_duplicates
• value_counts returns a Series with index frequencies:

- s.value_counts() # Series({'c': 3,'a': 3,'b': 2,'d': 1})

15D. Koop, CSCI 503/490, Spring 2023

Reading & Writing Data in Pandas

16

[https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html]
D. Koop, CSCI 503/490, Spring 2023

Format
Type

Data Description Reader Writer
text CSV read_csv to_csv
text Fixed-Width Text File read_fwf
text JSON read_json to_json
text HTML read_html to_html
text Local clipboard read_clipboard to_clipboard

MS Excel read_excel to_excel
binary OpenDocument read_excel
binary HDF5 Format read_hdf to_hdf
binary Feather Format read_feather to_feather
binary Parquet Format read_parquet to_parquet
binary ORC Format read_orc
binary Msgpack read_msgpack to_msgpack
binary Stata read_stata to_stata
binary SAS read_sas
binary SPSS read_spss
binary Python Pickle Format read_pickle to_pickle
SQL SQL read_sql to_sql
SQL Google BigQuery read_gbq to_gbq

https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html
https://en.wikipedia.org/wiki/Comma-separated_values
https://www.json.org/
https://en.wikipedia.org/wiki/HTML
https://en.wikipedia.org/wiki/Microsoft_Excel
http://www.opendocumentformat.org/
https://support.hdfgroup.org/HDF5/whatishdf5.html
https://github.com/wesm/feather
https://parquet.apache.org/
https://https//orc.apache.org/
https://msgpack.org/index.html
https://en.wikipedia.org/wiki/Stata
https://en.wikipedia.org/wiki/SAS_(software)
https://en.wikipedia.org/wiki/SPSS
https://docs.python.org/3/library/pickle.html
https://en.wikipedia.org/wiki/SQL
https://en.wikipedia.org/wiki/BigQuery

read_csv
• Convenient method to read csv files
• Lots of different options to help get data into the desired format
• Basic: df = pd.read_csv(fname)
• Parameters:

- path: where to read the data from
- sep (or delimiter): the delimiter (',', ' ', '\t', '\s+')
- header: if None, no header
- index_col: which column to use as the row index
- names: list of header names (e.g. if the file has no header)
- skiprows: number of list of lines to skip

17D. Koop, CSCI 503/490, Spring 2023

Writing CSV data with pandas
• Basic: df.to_csv(<fname>)
• Change delimiter with sep kwarg:

- df.to_csv('example.dsv', sep='|')

• Change missing value representation
- df.to_csv('example.dsv', na_rep='NULL')

• Don't write row or column labels:
- df.to_csv('example.csv', index=False, header=False)

• Series may also be written to csv

18D. Koop, CSCI 503/490, Spring 2023

1 False
2 True
3 False
dtype: bool

I do not claim that pandas’s NA representation is optimal, but it is simple and reason-
ably consistent. It’s the best solution, with good all-around performance characteristics
and a simple API, that I could concoct in the absence of a true NA data type or bit
pattern in NumPy’s data types. Ongoing development work in NumPy may change this
in the future.

Table 5-12. NA handling methods

Argument Description

dropna Filter axis labels based on whether values for each label have missing data, with varying thresholds for how much
missing data to tolerate.

fillna Fill in missing data with some value or using an interpolation method such as 'ffill' or 'bfill'.

isnull Return like-type object containing boolean values indicating which values are missing / NA.

notnull Negation of isnull.

Filtering Out Missing Data
You have a number of options for filtering out missing data. While doing it by hand is
always an option, dropna can be very helpful. On a Series, it returns the Series with only
the non-null data and index values:

In [233]: from numpy import nan as NA

In [234]: data = Series([1, NA, 3.5, NA, 7])

In [235]: data.dropna()
Out[235]:
0 1.0
2 3.5
4 7.0
dtype: float64

Naturally, you could have computed this yourself by boolean indexing:

In [236]: data[data.notnull()]
Out[236]:
0 1.0
2 3.5
4 7.0
dtype: float64

With DataFrame objects, these are a bit more complex. You may want to drop rows
or columns which are all NA or just those containing any NAs. dropna by default drops
any row containing a missing value:

140 | Chapter 5: Getting Started with pandas

Handling Missing Data

19

[W. McKinney, Python for Data Analysis]
D. Koop, CSCI 503/490, Spring 2023

Derived Data
• Create new columns from existing columns

- r["PctFail"] = r['Fail'] / r['Total']

- r = r.assign(PctFail= r['Fail'] / r['Total'])
• Note that operations are computed in a vectorized manner
• Similarities to functional paradigm (map/filter):
- specify the operation once
- no loops
- interpreted as an operation on the entire column

20D. Koop, CSCI 503/490, Spring 2023

inplace
• Generally, when we modify a data frame, we reassign:

- rdf = df.reset_index()

- This is usually very efficient
- Allows for method chaining

• There are versions where you can do this "inplace" (try to avoid this)
- df.reset_index(inplace=True)

- This means no reassignment, but it isn't usually any faster nor better
- Sometimes still creates a copy
- Will likely be deprecated

21D. Koop, CSCI 503/490, Spring 2023

https://github.com/pandas-dev/pandas/issues/16529

Aggregation
• Descriptive statistics

- df['Culmen Length (mm)'].mean()

- .median()

- .describe()

- .count()

- .min(), .max()

• Also general methods
- .sum()

- .product()

22D. Koop, CSCI 503/490, Spring 2023

Aggregation of time series data, a special use case of groupby, is referred
to as resampling in this book and will receive separate treatment in
Chapter 10.

GroupBy Mechanics
Hadley Wickham, an author of many popular packages for the R programming lan-
guage, coined the term split-apply-combine for talking about group operations, and I
think that’s a good description of the process. In the first stage of the process, data
contained in a pandas object, whether a Series, DataFrame, or otherwise, is split into
groups based on one or more keys that you provide. The splitting is performed on a
particular axis of an object. For example, a DataFrame can be grouped on its rows
(axis=0) or its columns (axis=1). Once this is done, a function is applied to each group,
producing a new value. Finally, the results of all those function applications are com-
bined into a result object. The form of the resulting object will usually depend on what’s
being done to the data. See Figure 9-1 for a mockup of a simple group aggregation.

Figure 9-1. Illustration of a group aggregation

Each grouping key can take many forms, and the keys do not have to be all of the same
type:

• A list or array of values that is the same length as the axis being grouped

• A value indicating a column name in a DataFrame

250 | Chapter 9: Data Aggregation and Group Operations

Split-Apply-Combine

23

[W. McKinney, Python for Data Analysis]
D. Koop, CSCI 503/490, Spring 2023

Split-Apply-Combine
• Similar to Map (split+apply) Reduce (combine) paradigm
• The Pattern:
1. Split the data by some grouping variable
2. Apply some function to each group independently
3. Combine the data into some output dataset

• The apply step is usually one of:
- Aggregate
- Transform
- Filter

24

[T. Brandt]
D. Koop, CSCI 503/490, Spring 2023

In Pandas
• groupby method creates a GroupBy object
• groupby doesn't actually compute anything until there is an apply/aggregate

step or we wish to examine the groups
• Choose keys (columns) to group by
• size() is the count of each group
• Other aggregates also work

25D. Koop, CSCI 503/490, Spring 2023

Examples
• df.groupby('Island')

• df.groupby('Island').size()

• df.groupby('Island')['Culmen Length (mm)'].mean()

26D. Koop, CSCI 503/490, Spring 2023

Split-Apply-Combine
• df.groupby('Island')[['Culmen Length (mm)',
 'Culmen Depth (mm)']].mean()

• df.groupby('Island').agg({'Culmen Length (mm)': 'mean',
 'Culmen Depth (mm)': 'mean'})

• df.groupby('Island').agg(
 cul_length=('Culmen Length (mm)', 'mean'),
 cul_depth=('Culmen Depth (mm)', 'mean'))

27D. Koop, CSCI 503/490, Spring 2023

Different Data Layouts

28

[H. Wickham, 2014]
D. Koop, CSCI 503/490, Spring 2023

Journal of Statistical Software 3

2.1. Data structure

Most statistical datasets are rectangular tables made up of rows and columns. The columns
are almost always labelled and the rows are sometimes labelled. Table 1 provides some data
about an imaginary experiment in a format commonly seen in the wild. The table has two
columns and three rows, and both rows and columns are labelled.

treatmenta treatmentb

John Smith — 2
Jane Doe 16 11
Mary Johnson 3 1

Table 1: Typical presentation dataset.

There are many ways to structure the same underlying data. Table 2 shows the same data
as Table 1, but the rows and columns have been transposed. The data is the same, but the
layout is di↵erent. Our vocabulary of rows and columns is simply not rich enough to describe
why the two tables represent the same data. In addition to appearance, we need a way to
describe the underlying semantics, or meaning, of the values displayed in table.

John Smith Jane Doe Mary Johnson

treatmenta — 16 3
treatmentb 2 11 1

Table 2: The same data as in Table 1 but structured di↵erently.

2.2. Data semantics

A dataset is a collection of values, usually either numbers (if quantitative) or strings (if
qualitative). Values are organised in two ways. Every value belongs to a variable and an
observation. A variable contains all values that measure the same underlying attribute (like
height, temperature, duration) across units. An observation contains all values measured on
the same unit (like a person, or a day, or a race) across attributes.

Table 3 reorganises Table 1 to make the values, variables and obserations more clear. The
dataset contains 18 values representing three variables and six observations. The variables
are:

1. person, with three possible values (John, Mary, and Jane).

2. treatment, with two possible values (a and b).

3. result, with five or six values depending on how you think of the missing value (-, 16,
3, 2, 11, 1).

The experimental design tells us more about the structure of the observations. In this exper-
iment, every combination of of person and treatment was measured, a completely crossed
design. The experimental design also determines whether or not missing values can be safely

Journal of Statistical Software 3

2.1. Data structure

Most statistical datasets are rectangular tables made up of rows and columns. The columns
are almost always labelled and the rows are sometimes labelled. Table 1 provides some data
about an imaginary experiment in a format commonly seen in the wild. The table has two
columns and three rows, and both rows and columns are labelled.

treatmenta treatmentb

John Smith — 2
Jane Doe 16 11
Mary Johnson 3 1

Table 1: Typical presentation dataset.

There are many ways to structure the same underlying data. Table 2 shows the same data
as Table 1, but the rows and columns have been transposed. The data is the same, but the
layout is di↵erent. Our vocabulary of rows and columns is simply not rich enough to describe
why the two tables represent the same data. In addition to appearance, we need a way to
describe the underlying semantics, or meaning, of the values displayed in table.

John Smith Jane Doe Mary Johnson

treatmenta — 16 3
treatmentb 2 11 1

Table 2: The same data as in Table 1 but structured di↵erently.

2.2. Data semantics

A dataset is a collection of values, usually either numbers (if quantitative) or strings (if
qualitative). Values are organised in two ways. Every value belongs to a variable and an
observation. A variable contains all values that measure the same underlying attribute (like
height, temperature, duration) across units. An observation contains all values measured on
the same unit (like a person, or a day, or a race) across attributes.

Table 3 reorganises Table 1 to make the values, variables and obserations more clear. The
dataset contains 18 values representing three variables and six observations. The variables
are:

1. person, with three possible values (John, Mary, and Jane).

2. treatment, with two possible values (a and b).

3. result, with five or six values depending on how you think of the missing value (-, 16,
3, 2, 11, 1).

The experimental design tells us more about the structure of the observations. In this exper-
iment, every combination of of person and treatment was measured, a completely crossed
design. The experimental design also determines whether or not missing values can be safely

4 Tidy Data

dropped. In this experiment, the missing value represents an observation that should have
been made, but wasn’t, so it’s important to keep it. Structural missing values, which represent
measurements that can’t be made (e.g., the count of pregnant males) can be safely removed.

name trt result

John Smith a —
Jane Doe a 16
Mary Johnson a 3
John Smith b 2
Jane Doe b 11
Mary Johnson b 1

Table 3: The same data as in Table 1 but with variables in columns and observations in rows.

For a given dataset, it’s usually easy to figure out what are observations and what are variables,
but it is surprisingly di�cult to precisely define variables and observations in general. For
example, if the columns in the Table 1 were height and weight we would have been happy
to call them variables. If the columns were height and width, it would be less clear cut, as
we might think of height and width as values of a dimension variable. If the columns were
home phone and work phone, we could treat these as two variables, but in a fraud detection
environment we might want variables phone number and number type because the use of one
phone number for multiple people might suggest fraud. A general rule of thumb is that it is
easier to describe functional relationships between variables (e.g., z is a linear combination
of x and y, density is the ratio of weight to volume) than between rows, and it is easier
to make comparisons between groups of observations (e.g., average of group a vs. average of
group b) than between groups of columns.

In a given analysis, there may be multiple levels of observation. For example, in a trial of new
allergy medication we might have three observational types: demographic data collected from
each person (age, sex, race), medical data collected from each person on each day (number
of sneezes, redness of eyes), and meterological data collected on each day (temperature,
pollen count).

2.3. Tidy data

Tidy data is a standard way of mapping the meaning of a dataset to its structure. A dataset is
messy or tidy depending on how rows, columns and tables are matched up with observations,
variables and types. In tidy data:

1. Each variable forms a column.

2. Each observation forms a row.

3. Each type of observational unit forms a table.

This is Codd’s 3rd normal form (Codd 1990), but with the constraints framed in statistical
language, and the focus put on a single dataset rather than the many connected datasets
common in relational databases. Messy data is any other other arrangement of the data.

Initial Data

Transpose

Tidy Data

Journal of Statistical Software 11

id year month element d1 d2 d3 d4 d5 d6 d7 d8

MX17004 2010 1 tmax — — — — — — — —
MX17004 2010 1 tmin — — — — — — — —
MX17004 2010 2 tmax — 27.3 24.1 — — — — —
MX17004 2010 2 tmin — 14.4 14.4 — — — — —
MX17004 2010 3 tmax — — — — 32.1 — — —
MX17004 2010 3 tmin — — — — 14.2 — — —
MX17004 2010 4 tmax — — — — — — — —
MX17004 2010 4 tmin — — — — — — — —
MX17004 2010 5 tmax — — — — — — — —
MX17004 2010 5 tmin — — — — — — — —

Table 11: Original weather dataset. There is a column for each possible day in the month. Columns
d9 to d31 have been omitted to conserve space.

id date element value

MX17004 2010-01-30 tmax 27.8
MX17004 2010-01-30 tmin 14.5
MX17004 2010-02-02 tmax 27.3
MX17004 2010-02-02 tmin 14.4
MX17004 2010-02-03 tmax 24.1
MX17004 2010-02-03 tmin 14.4
MX17004 2010-02-11 tmax 29.7
MX17004 2010-02-11 tmin 13.4
MX17004 2010-02-23 tmax 29.9
MX17004 2010-02-23 tmin 10.7

(a) Molten data

id date tmax tmin

MX17004 2010-01-30 27.8 14.5
MX17004 2010-02-02 27.3 14.4
MX17004 2010-02-03 24.1 14.4
MX17004 2010-02-11 29.7 13.4
MX17004 2010-02-23 29.9 10.7
MX17004 2010-03-05 32.1 14.2
MX17004 2010-03-10 34.5 16.8
MX17004 2010-03-16 31.1 17.6
MX17004 2010-04-27 36.3 16.7
MX17004 2010-05-27 33.2 18.2

(b) Tidy data

Table 12: (a) Molten weather dataset. This is almost tidy, but instead of values, the element column
contains names of variables. Missing values are dropped to conserve space. (b) Tidy weather dataset.
Each row represents the meteorological measurements for a single day. There are two measured
variables, minimum (tmin) and maximum (tmax) temperature; all other variables are fixed.

Problem: Variables stored in both rows & columns

29

[H. Wickham, 2014]
D. Koop, CSCI 503/490, Spring 2023

Mexico Weather, Global Historical Climatology Network

Journal of Statistical Software 11

id year month element d1 d2 d3 d4 d5 d6 d7 d8

MX17004 2010 1 tmax — — — — — — — —
MX17004 2010 1 tmin — — — — — — — —
MX17004 2010 2 tmax — 27.3 24.1 — — — — —
MX17004 2010 2 tmin — 14.4 14.4 — — — — —
MX17004 2010 3 tmax — — — — 32.1 — — —
MX17004 2010 3 tmin — — — — 14.2 — — —
MX17004 2010 4 tmax — — — — — — — —
MX17004 2010 4 tmin — — — — — — — —
MX17004 2010 5 tmax — — — — — — — —
MX17004 2010 5 tmin — — — — — — — —

Table 11: Original weather dataset. There is a column for each possible day in the month. Columns
d9 to d31 have been omitted to conserve space.

id date element value

MX17004 2010-01-30 tmax 27.8
MX17004 2010-01-30 tmin 14.5
MX17004 2010-02-02 tmax 27.3
MX17004 2010-02-02 tmin 14.4
MX17004 2010-02-03 tmax 24.1
MX17004 2010-02-03 tmin 14.4
MX17004 2010-02-11 tmax 29.7
MX17004 2010-02-11 tmin 13.4
MX17004 2010-02-23 tmax 29.9
MX17004 2010-02-23 tmin 10.7

(a) Molten data

id date tmax tmin

MX17004 2010-01-30 27.8 14.5
MX17004 2010-02-02 27.3 14.4
MX17004 2010-02-03 24.1 14.4
MX17004 2010-02-11 29.7 13.4
MX17004 2010-02-23 29.9 10.7
MX17004 2010-03-05 32.1 14.2
MX17004 2010-03-10 34.5 16.8
MX17004 2010-03-16 31.1 17.6
MX17004 2010-04-27 36.3 16.7
MX17004 2010-05-27 33.2 18.2

(b) Tidy data

Table 12: (a) Molten weather dataset. This is almost tidy, but instead of values, the element column
contains names of variables. Missing values are dropped to conserve space. (b) Tidy weather dataset.
Each row represents the meteorological measurements for a single day. There are two measured
variables, minimum (tmin) and maximum (tmax) temperature; all other variables are fixed.

Problem: Variables stored in both rows & columns

29

[H. Wickham, 2014]
D. Koop, CSCI 503/490, Spring 2023

Mexico Weather, Global Historical Climatology Network

Variable in columns: day; Variable in rows: tmax/tmin

Journal of Statistical Software 11

id year month element d1 d2 d3 d4 d5 d6 d7 d8

MX17004 2010 1 tmax — — — — — — — —
MX17004 2010 1 tmin — — — — — — — —
MX17004 2010 2 tmax — 27.3 24.1 — — — — —
MX17004 2010 2 tmin — 14.4 14.4 — — — — —
MX17004 2010 3 tmax — — — — 32.1 — — —
MX17004 2010 3 tmin — — — — 14.2 — — —
MX17004 2010 4 tmax — — — — — — — —
MX17004 2010 4 tmin — — — — — — — —
MX17004 2010 5 tmax — — — — — — — —
MX17004 2010 5 tmin — — — — — — — —

Table 11: Original weather dataset. There is a column for each possible day in the month. Columns
d9 to d31 have been omitted to conserve space.

id date element value

MX17004 2010-01-30 tmax 27.8
MX17004 2010-01-30 tmin 14.5
MX17004 2010-02-02 tmax 27.3
MX17004 2010-02-02 tmin 14.4
MX17004 2010-02-03 tmax 24.1
MX17004 2010-02-03 tmin 14.4
MX17004 2010-02-11 tmax 29.7
MX17004 2010-02-11 tmin 13.4
MX17004 2010-02-23 tmax 29.9
MX17004 2010-02-23 tmin 10.7

(a) Molten data

id date tmax tmin

MX17004 2010-01-30 27.8 14.5
MX17004 2010-02-02 27.3 14.4
MX17004 2010-02-03 24.1 14.4
MX17004 2010-02-11 29.7 13.4
MX17004 2010-02-23 29.9 10.7
MX17004 2010-03-05 32.1 14.2
MX17004 2010-03-10 34.5 16.8
MX17004 2010-03-16 31.1 17.6
MX17004 2010-04-27 36.3 16.7
MX17004 2010-05-27 33.2 18.2

(b) Tidy data

Table 12: (a) Molten weather dataset. This is almost tidy, but instead of values, the element column
contains names of variables. Missing values are dropped to conserve space. (b) Tidy weather dataset.
Each row represents the meteorological measurements for a single day. There are two measured
variables, minimum (tmin) and maximum (tmax) temperature; all other variables are fixed.

Solution: Melting + Pivot

30

[H. Wickham, 2014]
D. Koop, CSCI 503/490, Spring 2023

Melt
• Want to keep each observation separate (tidy), aka pivot_longer

31

[AB Abhi]
D. Koop, CSCI 503/490, Spring 2023

df.melt(id_vars=["location", "Temperature"],
 var_name="Date", value_name="Value")

https://www.codementor.io/@abhishake/reshaping-pandas-data-with-melt-lazg3j4te

Pivot
• Sometimes, we have data that is given in "long" format and we would like

"wide" format (aka pivot_wider)
• Long format: column names are data values…
• Wide format: more like spreadsheet format
• Example:

32

[W. McKinney, Python for Data Analysis]
D. Koop, CSCI 503/490, Spring 2023

 two 1 6
 three 2 7
Colorado one 3 8
 two 4 9
 three 5 10

In [109]: df.unstack('state') In [110]: df.unstack('state').stack('side')
Out[109]: Out[110]:
side left right state Ohio Colorado
state Ohio Colorado Ohio Colorado number side
number one left 0 3
one 0 3 5 8 right 5 8
two 1 4 6 9 two left 1 4
three 2 5 7 10 right 6 9
 three left 2 5
 right 7 10

Pivoting “long” to “wide” Format
A common way to store multiple time series in databases and CSV is in so-called long
or stacked format:

data = pd.read_csv('ch07/macrodata.csv')
periods = pd.PeriodIndex(year=data.year, quarter=data.quarter, name='date')
data = DataFrame(data.to_records(),
 columns=pd.Index(['realgdp', 'infl', 'unemp'], name='item'),
 index=periods.to_timestamp('D', 'end'))

ldata = data.stack().reset_index().rename(columns={0: 'value'})

In [116]: ldata[:10]
Out[116]:
 date item value
0 1959-03-31 realgdp 2710.349
1 1959-03-31 infl 0.000
2 1959-03-31 unemp 5.800
3 1959-06-30 realgdp 2778.801
4 1959-06-30 infl 2.340
5 1959-06-30 unemp 5.100
6 1959-09-30 realgdp 2775.488
7 1959-09-30 infl 2.740
8 1959-09-30 unemp 5.300
9 1959-12-31 realgdp 2785.204

Data is frequently stored this way in relational databases like MySQL as a fixed schema
(column names and data types) allows the number of distinct values in the item column
to increase or decrease as data is added or deleted in the table. In the above example
date and item would usually be the primary keys (in relational database parlance),
offering both relational integrity and easier joins and programmatic queries in many
cases. The downside, of course, is that the data may not be easy to work with in long
format; you might prefer to have a DataFrame containing one column per distinct

190 | Chapter 7: Data Wrangling: Clean, Transform, Merge, Reshape

item value indexed by timestamps in the date column. DataFrame’s pivot method per-
forms exactly this transformation:

In [117]: pivoted = ldata.pivot('date', 'item', 'value')

In [118]: pivoted.head()
Out[118]:
item infl realgdp unemp
date
1959-03-31 0.00 2710.349 5.8
1959-06-30 2.34 2778.801 5.1
1959-09-30 2.74 2775.488 5.3
1959-12-31 0.27 2785.204 5.6
1960-03-31 2.31 2847.699 5.2

The first two values passed are the columns to be used as the row and column index,
and finally an optional value column to fill the DataFrame. Suppose you had two value
columns that you wanted to reshape simultaneously:

In [119]: ldata['value2'] = np.random.randn(len(ldata))

In [120]: ldata[:10]
Out[120]:
 date item value value2
0 1959-03-31 realgdp 2710.349 1.669025
1 1959-03-31 infl 0.000 -0.438570
2 1959-03-31 unemp 5.800 -0.539741
3 1959-06-30 realgdp 2778.801 0.476985
4 1959-06-30 infl 2.340 3.248944
5 1959-06-30 unemp 5.100 -1.021228
6 1959-09-30 realgdp 2775.488 -0.577087
7 1959-09-30 infl 2.740 0.124121
8 1959-09-30 unemp 5.300 0.302614
9 1959-12-31 realgdp 2785.204 0.523772

By omitting the last argument, you obtain a DataFrame with hierarchical columns:

In [121]: pivoted = ldata.pivot('date', 'item')

In [122]: pivoted[:5]
Out[122]:
 value value2
item infl realgdp unemp infl realgdp unemp
date
1959-03-31 0.00 2710.349 5.8 -0.438570 1.669025 -0.539741
1959-06-30 2.34 2778.801 5.1 3.248944 0.476985 -1.021228
1959-09-30 2.74 2775.488 5.3 0.124121 -0.577087 0.302614
1959-12-31 0.27 2785.204 5.6 0.000940 0.523772 1.343810
1960-03-31 2.31 2847.699 5.2 -0.831154 -0.713544 -2.370232

In [123]: pivoted['value'][:5]
Out[123]:
item infl realgdp unemp
date
1959-03-31 0.00 2710.349 5.8
1959-06-30 2.34 2778.801 5.1

Reshaping and Pivoting | 191

.pivot('date', 'item', 'value')

Reshaping Data
• Reshape/pivoting are fundamental operations
• Can have a nested index in pandas
• Example: Congressional Districts (Ohio's 1st, 2nd, 3rd, Colorado's 1st, 2nd,

3rd) and associated representative rankings
• Could write this in different ways:

33D. Koop, CSCI 503/490, Spring 2023

2 5 4 10
3 3 6 14
4 7 8 NaN

Reshaping and Pivoting
There are a number of fundamental operations for rearranging tabular data. These are
alternatingly referred to as reshape or pivot operations.

Reshaping with Hierarchical Indexing
Hierarchical indexing provides a consistent way to rearrange data in a DataFrame.
There are two primary actions:

• stack: this “rotates” or pivots from the columns in the data to the rows

• unstack: this pivots from the rows into the columns

I’ll illustrate these operations through a series of examples. Consider a small DataFrame
with string arrays as row and column indexes:

In [94]: data = DataFrame(np.arange(6).reshape((2, 3)),
 : index=pd.Index(['Ohio', 'Colorado'], name='state'),
 : columns=pd.Index(['one', 'two', 'three'], name='number'))

In [95]: data
Out[95]:
number one two three
state
Ohio 0 1 2
Colorado 3 4 5

Using the stack method on this data pivots the columns into the rows, producing a
Series:

In [96]: result = data.stack()

In [97]: result
Out[97]:
state number
Ohio one 0
 two 1
 three 2
Colorado one 3
 two 4
 three 5
dtype: int64

From a hierarchically-indexed Series, you can rearrange the data back into a DataFrame
with unstack:

In [98]: result.unstack()
Out[98]:
number one two three

188 | Chapter 7: Data Wrangling: Clean, Transform, Merge, Reshape

2 5 4 10
3 3 6 14
4 7 8 NaN

Reshaping and Pivoting
There are a number of fundamental operations for rearranging tabular data. These are
alternatingly referred to as reshape or pivot operations.

Reshaping with Hierarchical Indexing
Hierarchical indexing provides a consistent way to rearrange data in a DataFrame.
There are two primary actions:

• stack: this “rotates” or pivots from the columns in the data to the rows

• unstack: this pivots from the rows into the columns

I’ll illustrate these operations through a series of examples. Consider a small DataFrame
with string arrays as row and column indexes:

In [94]: data = DataFrame(np.arange(6).reshape((2, 3)),
 : index=pd.Index(['Ohio', 'Colorado'], name='state'),
 : columns=pd.Index(['one', 'two', 'three'], name='number'))

In [95]: data
Out[95]:
number one two three
state
Ohio 0 1 2
Colorado 3 4 5

Using the stack method on this data pivots the columns into the rows, producing a
Series:

In [96]: result = data.stack()

In [97]: result
Out[97]:
state number
Ohio one 0
 two 1
 three 2
Colorado one 3
 two 4
 three 5
dtype: int64

From a hierarchically-indexed Series, you can rearrange the data back into a DataFrame
with unstack:

In [98]: result.unstack()
Out[98]:
number one two three

188 | Chapter 7: Data Wrangling: Clean, Transform, Merge, Reshape

state
Ohio 0 1 2
Colorado 3 4 5

By default the innermost level is unstacked (same with stack). You can unstack a dif-
ferent level by passing a level number or name:

In [99]: result.unstack(0) In [100]: result.unstack('state')
Out[99]: Out[100]:
state Ohio Colorado state Ohio Colorado
number number
one 0 3 one 0 3
two 1 4 two 1 4
three 2 5 three 2 5

Unstacking might introduce missing data if all of the values in the level aren’t found in
each of the subgroups:

In [101]: s1 = Series([0, 1, 2, 3], index=['a', 'b', 'c', 'd'])

In [102]: s2 = Series([4, 5, 6], index=['c', 'd', 'e'])

In [103]: data2 = pd.concat([s1, s2], keys=['one', 'two'])

In [104]: data2.unstack()
Out[104]:
 a b c d e
one 0 1 2 3 NaN
two NaN NaN 4 5 6

Stacking filters out missing data by default, so the operation is easily invertible:

In [105]: data2.unstack().stack() In [106]: data2.unstack().stack(dropna=False)
Out[105]: Out[106]:
one a 0 one a 0
 b 1 b 1
 c 2 c 2
 d 3 d 3
two c 4 e NaN
 d 5 two a NaN
 e 6 b NaN
dtype: float64 c 4
 d 5
 e 6
 dtype: float64

When unstacking in a DataFrame, the level unstacked becomes the lowest level in the
result:

In [107]: df = DataFrame({'left': result, 'right': result + 5},
 : columns=pd.Index(['left', 'right'], name='side'))

In [108]: df
Out[108]:
side left right
state number
Ohio one 0 5

Reshaping and Pivoting | 189

Reshaping Data
• Reshape/pivoting are fundamental operations
• Can have a nested index in pandas
• Example: Congressional Districts (Ohio's 1st, 2nd, 3rd, Colorado's 1st, 2nd,

3rd) and associated representative rankings
• Could write this in different ways:

33D. Koop, CSCI 503/490, Spring 2023

2 5 4 10
3 3 6 14
4 7 8 NaN

Reshaping and Pivoting
There are a number of fundamental operations for rearranging tabular data. These are
alternatingly referred to as reshape or pivot operations.

Reshaping with Hierarchical Indexing
Hierarchical indexing provides a consistent way to rearrange data in a DataFrame.
There are two primary actions:

• stack: this “rotates” or pivots from the columns in the data to the rows

• unstack: this pivots from the rows into the columns

I’ll illustrate these operations through a series of examples. Consider a small DataFrame
with string arrays as row and column indexes:

In [94]: data = DataFrame(np.arange(6).reshape((2, 3)),
 : index=pd.Index(['Ohio', 'Colorado'], name='state'),
 : columns=pd.Index(['one', 'two', 'three'], name='number'))

In [95]: data
Out[95]:
number one two three
state
Ohio 0 1 2
Colorado 3 4 5

Using the stack method on this data pivots the columns into the rows, producing a
Series:

In [96]: result = data.stack()

In [97]: result
Out[97]:
state number
Ohio one 0
 two 1
 three 2
Colorado one 3
 two 4
 three 5
dtype: int64

From a hierarchically-indexed Series, you can rearrange the data back into a DataFrame
with unstack:

In [98]: result.unstack()
Out[98]:
number one two three

188 | Chapter 7: Data Wrangling: Clean, Transform, Merge, Reshape

2 5 4 10
3 3 6 14
4 7 8 NaN

Reshaping and Pivoting
There are a number of fundamental operations for rearranging tabular data. These are
alternatingly referred to as reshape or pivot operations.

Reshaping with Hierarchical Indexing
Hierarchical indexing provides a consistent way to rearrange data in a DataFrame.
There are two primary actions:

• stack: this “rotates” or pivots from the columns in the data to the rows

• unstack: this pivots from the rows into the columns

I’ll illustrate these operations through a series of examples. Consider a small DataFrame
with string arrays as row and column indexes:

In [94]: data = DataFrame(np.arange(6).reshape((2, 3)),
 : index=pd.Index(['Ohio', 'Colorado'], name='state'),
 : columns=pd.Index(['one', 'two', 'three'], name='number'))

In [95]: data
Out[95]:
number one two three
state
Ohio 0 1 2
Colorado 3 4 5

Using the stack method on this data pivots the columns into the rows, producing a
Series:

In [96]: result = data.stack()

In [97]: result
Out[97]:
state number
Ohio one 0
 two 1
 three 2
Colorado one 3
 two 4
 three 5
dtype: int64

From a hierarchically-indexed Series, you can rearrange the data back into a DataFrame
with unstack:

In [98]: result.unstack()
Out[98]:
number one two three

188 | Chapter 7: Data Wrangling: Clean, Transform, Merge, Reshape

state
Ohio 0 1 2
Colorado 3 4 5

By default the innermost level is unstacked (same with stack). You can unstack a dif-
ferent level by passing a level number or name:

In [99]: result.unstack(0) In [100]: result.unstack('state')
Out[99]: Out[100]:
state Ohio Colorado state Ohio Colorado
number number
one 0 3 one 0 3
two 1 4 two 1 4
three 2 5 three 2 5

Unstacking might introduce missing data if all of the values in the level aren’t found in
each of the subgroups:

In [101]: s1 = Series([0, 1, 2, 3], index=['a', 'b', 'c', 'd'])

In [102]: s2 = Series([4, 5, 6], index=['c', 'd', 'e'])

In [103]: data2 = pd.concat([s1, s2], keys=['one', 'two'])

In [104]: data2.unstack()
Out[104]:
 a b c d e
one 0 1 2 3 NaN
two NaN NaN 4 5 6

Stacking filters out missing data by default, so the operation is easily invertible:

In [105]: data2.unstack().stack() In [106]: data2.unstack().stack(dropna=False)
Out[105]: Out[106]:
one a 0 one a 0
 b 1 b 1
 c 2 c 2
 d 3 d 3
two c 4 e NaN
 d 5 two a NaN
 e 6 b NaN
dtype: float64 c 4
 d 5
 e 6
 dtype: float64

When unstacking in a DataFrame, the level unstacked becomes the lowest level in the
result:

In [107]: df = DataFrame({'left': result, 'right': result + 5},
 : columns=pd.Index(['left', 'right'], name='side'))

In [108]: df
Out[108]:
side left right
state number
Ohio one 0 5

Reshaping and Pivoting | 189

MultiIndex

Stack and Unstack
• stack: pivots from the columns into rows (may produce a Series!)
• unstack: pivots from rows into columns
• unstacking may add missing data
• stacking filters out missing data (unless dropna=False)
• can unstack at a different level by passing it (e.g. 0), defaults to innermost

level

34

[W. McKinney, Python for Data Analysis]
D. Koop, CSCI 503/490, Spring 2023

2 5 4 10
3 3 6 14
4 7 8 NaN

Reshaping and Pivoting
There are a number of fundamental operations for rearranging tabular data. These are
alternatingly referred to as reshape or pivot operations.

Reshaping with Hierarchical Indexing
Hierarchical indexing provides a consistent way to rearrange data in a DataFrame.
There are two primary actions:

• stack: this “rotates” or pivots from the columns in the data to the rows

• unstack: this pivots from the rows into the columns

I’ll illustrate these operations through a series of examples. Consider a small DataFrame
with string arrays as row and column indexes:

In [94]: data = DataFrame(np.arange(6).reshape((2, 3)),
 : index=pd.Index(['Ohio', 'Colorado'], name='state'),
 : columns=pd.Index(['one', 'two', 'three'], name='number'))

In [95]: data
Out[95]:
number one two three
state
Ohio 0 1 2
Colorado 3 4 5

Using the stack method on this data pivots the columns into the rows, producing a
Series:

In [96]: result = data.stack()

In [97]: result
Out[97]:
state number
Ohio one 0
 two 1
 three 2
Colorado one 3
 two 4
 three 5
dtype: int64

From a hierarchically-indexed Series, you can rearrange the data back into a DataFrame
with unstack:

In [98]: result.unstack()
Out[98]:
number one two three

188 | Chapter 7: Data Wrangling: Clean, Transform, Merge, Reshape

2 5 4 10
3 3 6 14
4 7 8 NaN

Reshaping and Pivoting
There are a number of fundamental operations for rearranging tabular data. These are
alternatingly referred to as reshape or pivot operations.

Reshaping with Hierarchical Indexing
Hierarchical indexing provides a consistent way to rearrange data in a DataFrame.
There are two primary actions:

• stack: this “rotates” or pivots from the columns in the data to the rows

• unstack: this pivots from the rows into the columns

I’ll illustrate these operations through a series of examples. Consider a small DataFrame
with string arrays as row and column indexes:

In [94]: data = DataFrame(np.arange(6).reshape((2, 3)),
 : index=pd.Index(['Ohio', 'Colorado'], name='state'),
 : columns=pd.Index(['one', 'two', 'three'], name='number'))

In [95]: data
Out[95]:
number one two three
state
Ohio 0 1 2
Colorado 3 4 5

Using the stack method on this data pivots the columns into the rows, producing a
Series:

In [96]: result = data.stack()

In [97]: result
Out[97]:
state number
Ohio one 0
 two 1
 three 2
Colorado one 3
 two 4
 three 5
dtype: int64

From a hierarchically-indexed Series, you can rearrange the data back into a DataFrame
with unstack:

In [98]: result.unstack()
Out[98]:
number one two three

188 | Chapter 7: Data Wrangling: Clean, Transform, Merge, Reshape

state
Ohio 0 1 2
Colorado 3 4 5

By default the innermost level is unstacked (same with stack). You can unstack a dif-
ferent level by passing a level number or name:

In [99]: result.unstack(0) In [100]: result.unstack('state')
Out[99]: Out[100]:
state Ohio Colorado state Ohio Colorado
number number
one 0 3 one 0 3
two 1 4 two 1 4
three 2 5 three 2 5

Unstacking might introduce missing data if all of the values in the level aren’t found in
each of the subgroups:

In [101]: s1 = Series([0, 1, 2, 3], index=['a', 'b', 'c', 'd'])

In [102]: s2 = Series([4, 5, 6], index=['c', 'd', 'e'])

In [103]: data2 = pd.concat([s1, s2], keys=['one', 'two'])

In [104]: data2.unstack()
Out[104]:
 a b c d e
one 0 1 2 3 NaN
two NaN NaN 4 5 6

Stacking filters out missing data by default, so the operation is easily invertible:

In [105]: data2.unstack().stack() In [106]: data2.unstack().stack(dropna=False)
Out[105]: Out[106]:
one a 0 one a 0
 b 1 b 1
 c 2 c 2
 d 3 d 3
two c 4 e NaN
 d 5 two a NaN
 e 6 b NaN
dtype: float64 c 4
 d 5
 e 6
 dtype: float64

When unstacking in a DataFrame, the level unstacked becomes the lowest level in the
result:

In [107]: df = DataFrame({'left': result, 'right': result + 5},
 : columns=pd.Index(['left', 'right'], name='side'))

In [108]: df
Out[108]:
side left right
state number
Ohio one 0 5

Reshaping and Pivoting | 189

stack

unstack

unstack(0)

T

