Programming Principles in Python (CSCI 503/490)

Arrays

Dr. David Koop
CPU-Bound vs. I/O-Bound

- **CPU Processing**
 - Compute Problem 1
 - Compute Problem 2

- **I/O Waiting**
 - Request 1
 - Request 2
 - Request 3

- **CPU Processing**
 - Time

[D. Koop, CSCI 503/490, Spring 2023]
Threading

- Threading addresses the I/O waits by letting separate pieces of a program run at the same time.
- Threads run in the same process.
- Threads share the same memory (and global variables).
- Operating system schedules threads; it can manage when each thread runs, e.g., round-robin scheduling.
- When blocking for I/O, other threads can run.
Python Threading Speed

- If I/O bound, threads work great because time spent waiting can now be used by other threads
- Threads **do not** run simultaneously in standard Python, i.e. they cannot take advantage of multiple cores
- Use threads when code is I/O bound, otherwise no real speed-up plus some overhead for using threads
Python and the GIL

- Solution for reference counting (used for garbage collection)
- Could add locking to every value/data structure, but with multiple locks comes possible deadlock
- Python instead has a Global Interpreter Lock (GIL) that must be acquired to execute any Python code
- This effectively makes Python single-threaded (faster execution)
- Python requires threads to give up GIL after certain amount of time
- Python 3 improved allocation of GIL to threads by not allowing a single CPU-bound thread to hog it
Multiprocessing

- Multiple processes do not need to share the same memory, interact less
- Python makes the difference between processes and threads minimal in most cases
- Big win: can take advantage of multiple cores!
Multiprocessing using concurrent.futures

- import concurrent.futures
 import multiprocessing as mp
 import time

 def dummy(num):
 time.sleep(5)
 return num ** 2

 with concurrent.futures.ProcessPoolExecutor(max_workers=5,
 mp_context=mp.get_context('fork')) as executor:
 results = executor.map(dummy, range(10))

- mp.get_context('fork') changes from 'spawn' used by default in MacOS, works in notebook
asyncio

- Single event loop that controls when each task is run
- Tasks can be ready or waiting
- Tasks are **not interrupted** like they are with threading
 - Task controls when control goes back to the main event loop
 - Either waiting or complete
- Event loop keeps track of whether tasks are ready or waiting
 - Re-checks to see if new tasks are now ready
 - Picks the task that has been waiting the longest
- `async` and `await` keywords
- Requires support from libraries (e.g. `aiohttp`)
When to use threading, asyncio, or multiprocessing?

- If your code has a lot of I/O or Network usage:
 - If there is library support, use asyncio
 - Otherwise, multithreading is your best bet (lower overhead)
- If you have a GUI
 - Multithreading so your UI thread doesn't get locked up
- If your code is CPU bound:
 - You should use multiprocessing (if your machine has multiple cores)
Concurrency Comparison

<table>
<thead>
<tr>
<th>Concurrency Type</th>
<th>Switching Decision</th>
<th>Number of Processors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-emptive multitasking (threading)</td>
<td>The operating system decides when to switch tasks external to Python.</td>
<td>1</td>
</tr>
<tr>
<td>Cooperative multitasking (asyncio)</td>
<td>The tasks decide when to give up control.</td>
<td>1</td>
</tr>
<tr>
<td>Multiprocessing (multiprocessing)</td>
<td>The processes all run at the same time on different processors.</td>
<td>Many</td>
</tr>
</tbody>
</table>
Assignment 7

- Coming soon…
Arrays

What is the difference between an array and a list (or a tuple)?
Arrays

- Usually a fixed size—lists are meant to change size
- Are mutable—tuples are not
- Store only one type of data—lists and tuples can store any combination
- Are faster to access and manipulate than lists or tuples
- Can be multidimensional:
 - Can have list of lists or tuple of tuples but no guarantee on shape
 - Multidimensional arrays are rectangles, cubes, etc.
Why NumPy?

• Fast **vectorized** array operations for data munging and cleaning, subsetting and filtering, transformation, and any other kinds of computations

• Common array algorithms like sorting, unique, and set operations

• Efficient descriptive statistics and aggregating/summarizing data

• Data alignment and relational data manipulations for merging and joining together heterogeneous data sets

• Expressing conditional logic as array expressions instead of loops with `if-elif-else` branches

• Group-wise data manipulations (aggregation, transformation, function application).

[W. McKinney, Python for Data Analysis]
import numpy as np
Creating arrays

- data1 = [6, 7, 8, 0, 1]
 arr1 = np.array(data1)
- data2 = [[1.5, 2, 3, 4], [5, 6, 7, 8]]
 arr2 = np.array(data2)
- data3 = np.array([6, "abc", 3.57]) # !!! check !!!

- Can check the type of an array in dtype property

- Types:
 - arr1.dtype # dtype('int64')
 - arr3.dtype # dtype('<U21'), unicode plus # chars
Types

• "But I thought Python wasn't stingy about types…"
• numpy aims for speed
• Able to do array arithmetic
• int16, int32, int64, float32, float64, bool, object
• Can specify type explicitly
 - arr1_float = np.array(data1, dtype='float64')
• astype method allows you to convert between different types of arrays:

 arr = np.array([1, 2, 3, 4, 5])
 arr.dtype
 float_arr = arr.astype(np.float64)
numpy data types (dtypes)

<table>
<thead>
<tr>
<th>Type</th>
<th>Type code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>int8, uint8</td>
<td>i1, u1</td>
<td>Signed and unsigned 8-bit (1 byte) integer types</td>
</tr>
<tr>
<td>int16, uint16</td>
<td>i2, u2</td>
<td>Signed and unsigned 16-bit integer types</td>
</tr>
<tr>
<td>int32, uint32</td>
<td>i4, u4</td>
<td>Signed and unsigned 32-bit integer types</td>
</tr>
<tr>
<td>int64, uint64</td>
<td>i8, u8</td>
<td>Signed and unsigned 64-bit integer types</td>
</tr>
<tr>
<td>float16</td>
<td>f2</td>
<td>Half-precision floating point</td>
</tr>
<tr>
<td>float32</td>
<td>f4 or f</td>
<td>Standard single-precision floating point; compatible with C float</td>
</tr>
<tr>
<td>float64</td>
<td>f8 or d</td>
<td>Standard double-precision floating point; compatible with C double and Python float object</td>
</tr>
<tr>
<td>float128</td>
<td>f16 or g</td>
<td>Extended-precision floating point</td>
</tr>
<tr>
<td>complex64,</td>
<td>c8, c16,</td>
<td>Complex numbers represented by two 32, 64, or 128 floats, respectively</td>
</tr>
<tr>
<td>complex128</td>
<td>c32</td>
<td></td>
</tr>
<tr>
<td>complex256</td>
<td></td>
<td></td>
</tr>
<tr>
<td>bool</td>
<td>?</td>
<td>Boolean type storing True and False values</td>
</tr>
<tr>
<td>object</td>
<td>0</td>
<td>Python object type; a value can be any Python object</td>
</tr>
<tr>
<td>string_</td>
<td>S</td>
<td>Fixed-length ASCII string type (1 byte per character); for example, to create a string dtype with length 10, use 'S10'</td>
</tr>
<tr>
<td>unicode_</td>
<td>U</td>
<td>Fixed-length Unicode type (number of bytes platform specific); same specification semantics as string_ (e.g., 'U10')</td>
</tr>
</tbody>
</table>
Array Shape

- Our normal way of checking the size of a collection is... `len`
- How does this work for arrays?
 - `arr1 = np.array([1,2,3,6,9])`
 - `len(arr1) # 5`
 - `arr2 = np.array([[1.5,2,3,4],[5,6,7,8]])`
 - `len(arr2) # 2`
- All dimension lengths \rightarrow `shape`: `arr2.shape # (2,4)`
- Number of dimensions: `arr2.ndim # 2`
- Can also reshape an array:
 - `arr2.reshape(4,2)`
 - `arr2.reshape(-1,2) # what happens here?`
Speed Benefits

• Compare random number generation in pure Python versus numpy

• Python:
 - import random
 %timeit rolls_list = [random.randrange(1,7)
 for i in range(0, 60_000)]

• With NumPy:
 - %timeit rolls_array = np.random.randint(1, 7, 60_000)

• Significant speedup (80x+)
Array Programming

- Lists:

  ```python
  c = []
  for aa, bb in zip(a, b):
      c.append(aa + bb)
  ```

- How to improve this?
Array Programming

- Lists:
 - `c = []`
 - `for aa, bb in zip(a, b):
 c.append(aa + bb)`
 - `c = [aa + bb for aa, bb in zip(a, b)]`

- NumPy arrays:
 - `c = a + b`

- More functional-style than imperative
- **Internal iteration** instead of external
Operations

• $a = \text{np.array([1, 2, 3])}$
 $b = \text{np.array([6, 4, 3])}$

• (Array, Array) Operations (**Element-wise**)
 - Addition, Subtraction, Multiplication
 - $a + b \# \text{array([7, 6, 6])}$

• (Scalar, Array) Operations (**Broadcasting**):
 - Addition, Subtraction, Multiplication, Division, Exponentiation
 - $a ** 2 \# \text{array([1, 4, 9])}$
 - $b + 3 \# \text{array([9, 7, 6])}$
More on Array Creation

- Zeros: `np.zeros(10)`
- Ones: `np.ones((4, 5))` # shape
- Empty: `np.empty((2, 2))`
- _like versions: pass an existing array and matches shape with specified contents
- Range: `np.arange(15)` # constructs an array, not iterator!
Indexing

• Same as with lists plus shorthand for 2D+
 - arr1 = np.array([6, 7, 8, 0, 1])
 - arr1[1]
 - arr1[-1]

• What about two dimensions?
 - arr2 = np.array([[1.5, 2, 3, 4], [5, 6, 7, 8]])
 - arr[1][1]
 - arr[1,1] # shorthand
2D Indexing

In multidimensional arrays, if you omit later indices, the returned object will be a lower dimensional ndarray consisting of all the data along the higher dimensions. So in the $2 \times 2 \times 3$ array $arr3d$:

```
In [76]:
arr3d = np.array([
    [[1, 2, 3],
     [4, 5, 6]],
    [[7, 8, 9],
     [10, 11, 12]]])
```

```
In [77]:
a4 = arr3d[0]
```

```
Out [77]:
array([[1, 2, 3],
       [4, 5, 6]])
```

`arr3d[0]` is a 2×3 array:

```
In [78]:
a4 = arr3d[0]
```

```
Out [78]:
array([[1, 2, 3],
       [4, 5, 6]])
```

Both scalar values and arrays can be assigned to `arr3d[0]`:

```
In [79]:
old_values = arr3d[0].copy()
```

```
In [80]:
a4 = 42
```

```
Out [81]:
array([[42, 42, 42],
       [42, 42, 42]])
```

```
In [82]:
a4 = old_values
```

[W. McKinney, Python for Data Analysis]
Slicing

• 1D: Similar to lists
 - arr1 = np.array([6, 7, 8, 0, 1])
 - arr1[2:5] # np.array([8, 0, 1]), sort of

• Can mutate original array:
 - arr1[2:5] = 3 # supports assignment
 - arr1 # the original array changed

• Slicing returns views (copy the array if original array shouldn't change)
 - arr1[2:5] # a view
 - arr1[2:5].copy() # a new array