
Programming Principles in Python (CSCI 503/490)

OS Integration

Dr. David Koop

D. Koop, CSCI 503/490, Spring 2023

Debugging: Print Statements
• Just print the values or other information about identifiers:
• def my_function(a, b):
 print(a, b)
 print(b - a == 0)
 return a + b

• Note that we need to remember what is being printed
• Can add this to print call, or use f-strings with trailing = which causes the

name and value of the variable to be printed
• def my_function(a, b):
 print(f"{a=} {b=} {b - a == 0}")
 return a + b

2D. Koop, CSCI 503/490, Spring 2023

Debugging: Logging Library
• Allows different levels of output (e.g. DEBUG, INFO, WARNING, ERROR

CRITICAL)
• Can output to a file as well as stdout/stderr
• Can configure to suppress certain levels or filter messages
• import logging
logger = logging.Logger('my-logger')
logger.setLevel(logging.DEBUG)
def my_function(a,b):
 logger.debug(f"{a=} {b=} {b-a == 0}")
 return a + b
my_function(3, 5)

3D. Koop, CSCI 503/490, Spring 2023

Debugging: Python Debugger (pdb)
• Debuggers offer the ability to inspect and interact with code as it is running
- Post-mortem inspection (%debug, python -m pdb)
- Breakpoints (just call breakpoint())

• pdb is standard Python, also an ipdb variant for IPython/notebooks
- p [print expressions]: Print expressions, comma separated
- n [step over]: continue until next line in current function
- s [step into]: stop at next line of code (same function or one being called)
- c [continue]: continue execution until next breakpoint

4D. Koop, CSCI 503/490, Spring 2023

Debugging: JupyterLab Debugger

5

[JupyterLab Docs]
D. Koop, CSCI 503/490, Spring 2023

https://jupyterlab.readthedocs.io/en/stable/user/debugger.html

Debugging: JupyterLab Debugger

5

[JupyterLab Docs]
D. Koop, CSCI 503/490, Spring 2023

https://jupyterlab.readthedocs.io/en/stable/user/debugger.html

Testing via Print/If Statements
• Can make sure that types or values satisfy expectations
• if not isinstance(a, str):
 raise Exception("a is not a string")

• if 3 < a <= 7:
 raise Exception("a should not be in (3,7]")

• These may not be something we need to always check during runtime

6D. Koop, CSCI 503/490, Spring 2023

Testing via Assertions
• Shortcut for the manual if statements
• Have python throw an exception if a particular condition is not met
• assert is a keyword, part of a statement, not a function
• assert a == 1, "a is not 1"

• Raises AssertionError if the condition is not met, otherwise continues
• Can be caught in an except clause or made to crash the code
• Problem: first failure ends error checks

7D. Koop, CSCI 503/490, Spring 2023

Unit Tests
• "Testing shows the presence, not the absence of bugs", E. Dijkstra
• Want to test many parts of the code
• Try to cover different functions that may or may not be called
• Write functions that test code
• def add(a, b):
 return a + b + 1
def test_add():
 assert add(3,4) == 7, "add not working"
def test_operator():
 assert operator.add(3,4) == 7, "__add__ not working"

• If we just call these in a program, first error stops all testing

8D. Koop, CSCI 503/490, Spring 2023

Unit Testing Framework
• unittest: built in to Python Standard Library
• nose2: nose tests, was nose, now nose2 (some nicer filtering options)
• pytest: extra features like restarting tests from last failed test
• doctest: built-in, allows test specification in docstrings

• With the exception of doctest, the frameworks allow the same specification
of tests

9D. Koop, CSCI 503/490, Spring 2023

unittest
• Subclass from unittest.TestCase, write test_* functions
• Use assert* instance functions
• import unittest

class TestOperators(unittest.TestCase):
 def test_add(self):
 self.assertEqual(add(3, 4), 7)

 def test_add_op(self):
 self.assertEqual(operator.add(3,4), 7)
unittest.main(argv=[''], exit=False)

10D. Koop, CSCI 503/490, Spring 2023

Lots of Assertions
• assertEqual/assertNotEqual: smart about lists/tuples/etc.
• assertLess/assertGreater/assertLessEqual/assertGreaterEqual
• assertAlmostEqual: allows for floating-point arithmetic errors
• assertTrue/assertFalse: check boolean assertions
• assertIsNone: check for None values
• assertIn: check containment
• assertIsInstance
• assertRegex: check that a regex matches
• assertRaises: check that a particular exception is raised

11D. Koop, CSCI 503/490, Spring 2023

Test Options
• Run only certain tests

- argv=[''] # run default set of tests

- argv=['', 'TestLists'] # run all test* methods in TestLists

- argv=['', 'TestAdd.test_add'] # run test_add in TestAdd

• Show more detailed output
- By default, one character per test plus listing at end

• F.

• . indicates success, F indicates failed, E indicates error
- verbosity=2

• test_add (__main__.TestAdd) ... FAIL
test_add_op (__main__.TestAdd) ... ok

12D. Koop, CSCI 503/490, Spring 2023

Startup and Cleanup for Tests
• setUp: instantiate particular objects, read data, etc.
• tearDown: get rid of unnecessary objects
• Example: set up a GUI widget that will be tested

- def setUp(self):
 self.widget = Widget(some_params)
def tearDown(self):
 self.widget.dispose()

• Also functions for setting up classes and modules

13

[Python Documentation]
D. Koop, CSCI 503/490, Spring 2023

https://docs.python.org/3/library/unittest.html#organizing-tests

Mock Testing
• Sometimes we don't want to actually execute all of the code that may be

triggered by a particular test
• Examples: code that posts to Twitter, code that deletes files
• We can mock this behavior by substituting the actual methods with mockers
• Can even simulate side effects like having the function being mocked raise an

exception signifying the network is done

14D. Koop, CSCI 503/490, Spring 2023

Mock Examples
• Can check whether/how many times the mocked function was called
• from unittest.mock import MagicMock
thing = ProductionClass()
thing.method = MagicMock(return_value=3)
thing.method(3, 4, 5, key='value')
thing.method.assert_called_with(3, 4, 5, key='value')

• from unittest.mock import patch
with patch.object(ProductionClass, 'method',
 return_value=None) as mock_method:
 thing = ProductionClass()
 thing.method(1, 2, 3)
mock_method.assert_called_once_with(1, 2, 3)

15

[Python Documentation]
D. Koop, CSCI 503/490, Spring 2023

https://docs.python.org/3/library/unittest.mock.html

Assignment 6
• Object-Oriented Programming
• Due after the test, but very helpful for Test 2
• Build a course registration system
• Design classes, use inheritance

16D. Koop, CSCI 503/490, Spring 2023

http://faculty.cs.niu.edu/~dakoop/cs503-2023sp/assignment6.html

Test 2
• Wednesday, April 5, in class from 11am-12:15pm
• Similar Format to Test 1
• Emphasizes topics covered since Test 1, but still need to know core

concepts from the first third of the course

17D. Koop, CSCI 503/490, Spring 2023

http://faculty.cs.niu.edu/~dakoop/cs503-2023sp/test2.html

Integration with the Operating System
• For now, focus on the filesystem
- Listing & Traversing Directories
- Creating Directories
- Matching Files
- Copying, Moving, Removing Files/Directories

• Using Material by Vuyisile Ndlovu:
- https://realpython.com/working-with-files-in-python/

18D. Koop, CSCI 503/490, Spring 2023

https://realpython.com/working-with-files-in-python/

Modules
• In general, cross-platform! (Linux, Mac, Windows)
• os: translations of operating system commands
• shutil: better support for file and directory management
• fnmatch, glob: match filenames, paths
• os.path: path manipulations
• pathlib: object-oriented approach to path manipulations, also includes

some support for matching paths

19D. Koop, CSCI 503/490, Spring 2023

Directory Listing
• Old approach: os.listdir
• New approach: os.scandir
- Uses iterators, object-based, faster (fewer stat calls), returns DirEntry
- with os.scandir('my_directory/') as entries:
 for entry in entries:
 print(entry.name)

• Pathlib approach:
- from pathlib import Path
path = Path('my_directory/')
for entry in path.iterdir():
 print(entry.name)

20

[V. Ndlovu]
D. Koop, CSCI 503/490, Spring 2023

https://realpython.com/working-with-files-in-python/

Listing Files in a Directory
• Difference between file and directory
• isfile/is_file methods:

- os.path.isfile
- DirEntry.is_file
- Path.is_file

• Test while iterating through
- from pathlib import Path
basepath = Path('my_directory/')
files_in_basepath = basepath.iterdir()
for item in files_in_basepath:
 if item.is_file():
 print(item.name)

21

[V. Ndlovu]
D. Koop, CSCI 503/490, Spring 2023

https://realpython.com/working-with-files-in-python/

Listing Subdirectories
• Use isdir/is_dir instead

- from pathlib import Path
basepath = Path('my_directory/')
files_in_basepath = basepath.iterdir()
for item in files_in_basepath:
 if item.is_dir():
 print(item.name)

22D. Koop, CSCI 503/490, Spring 2023

File Attributes
• Getting information about a file is "stat"-ing it (from the system call name)
• Names are similarly a bit esoteric, use documentation
• os.stat or use .stat methods on DirEntry/Path
• Modification time:

- from pathlib import Path
current_dir = Path('my_directory')
for path in current_dir.iterdir():
 info = path.stat()
 print(info.st_mtime)

• Also can check existence: path.exists()

23

[V. Ndlovu]
D. Koop, CSCI 503/490, Spring 2023

https://docs.python.org/3/library/stat.html
https://realpython.com/working-with-files-in-python/

Making Directories
• Modify the filesystem
• Know where you currently are first
- os.getcwd() or Path.cwd(): current working directory

• os.mkdir: single subdirectory
• os.makedirs: multiple subdirs
• pathlib.Path.mkdir: single or multiple directories (with parents=True)
• Can raise exceptions (e.g. file already exists)
• from pathlib import Path
p = Path('example_directory/')
p.mkdir()

24

[V. Ndlovu]
D. Koop, CSCI 503/490, Spring 2023

https://realpython.com/working-with-files-in-python/

Filename Pattern Matching
• string.endswith/startswith: no wildcards
• fnmatch: adds * and ? wildcards to use when matching (not just like regex!)
• glob.glob: treats filenames starting with . as special
- can do recursive matchings (e.g. in subdirectories) using **

• pathlib.Path.glob: object-oriented version of glob
• from pathlib import Path
p = Path('.')
for name in p.glob('*.p*'):
 print(name)

25

[V. Ndlovu]
D. Koop, CSCI 503/490, Spring 2023

https://realpython.com/working-with-files-in-python/

Pathname Manipulation
• os.path.split returns tuple (dirname, basename)
- can use os.path.dirname/basename to get these only
- os.path.split('/path/to/file.txt') # ('/path/to', 'file.txt')

• os.path.join: inverse of split
• os.path.splitext: split filename and extension
• pathlib.Path has OOP versions:

- .parent/.name == dirname/basename
- .stem/.suffix ~ splitext, also suffixes
- / operator (also joinpath ~ join)

26D. Koop, CSCI 503/490, Spring 2023

Traversing Directories and Processing Files
• os.walk
• for dirpath, dirnames, files in os.walk('.'):
 print(f'Found directory: {dirpath}')
 for file_name in files:
 print(file_name)

• Returns three values on loop iteration:
1. The name of the current directory
2. A list of subdirectories in the current directory
3. A list of files in the current directory

• topdown and followlinks arguments
• pathlib algorithms exist but DIY

27

[V. Ndlovu]
D. Koop, CSCI 503/490, Spring 2023

https://realpython.com/working-with-files-in-python/

Temporary Files and Directories
• tempfile knows system directories for storing temporary files
• deletes the file when it is closed
• from tempfile import TemporaryFile
with TemporaryFile('w+t') as fp:
 fp.write('Hello universe!')
 fp.seek(0)
 fp.read()
File is now closed and removed

• Can also use in with statement (context manager)
• Can also create temporary directories

28

[V. Ndlovu]
D. Koop, CSCI 503/490, Spring 2023

https://realpython.com/working-with-files-in-python/

Deleting Files and Directories
• Files: os.remove or os.unlink, or pathlib.Path.unlink
• from pathlib import Path
Path('home/data.txt').unlink()

• Directories: rmdir or shutil.rmtree
- rmdir only works if the directory is empty
- Careful: this deletes the entire directory (and everything inside it)

• shutil.rmtree('my_documents/bad_dir')

29

[V. Ndlovu]
D. Koop, CSCI 503/490, Spring 2023

https://realpython.com/working-with-files-in-python/

Copying Files & Directories
• shutil.copy: copy file to specified directory

- shutil.copy('path/to/file.txt', 'path/to/dest_dir')

• shutil.copy2 preserves metadata, same syntax
• Copy entire tree: shutil.copytree('data_1', 'data1_backup')

30

[V. Ndlovu]
D. Koop, CSCI 503/490, Spring 2023

https://realpython.com/working-with-files-in-python/

Moving and Renaming Files/Directories
• Moving files or directories:

- shutil.move('dir_1/', 'backup/')

• Renaming files or directories:
- os.rename
- pathlib.Path.rename
- data_file = Path('data_01.txt')
data_file.rename('data.txt')

31

[V. Ndlovu]
D. Koop, CSCI 503/490, Spring 2023

https://realpython.com/working-with-files-in-python/

Archives
• zipfile: module to deal with zip files
• tarfile: module to deal with tar files, can compress (tar.gz)
• Easier: shutil.make_archive
- Specify base name, format, and root directory to archive
- shutil.make_archive('data/backup', 'tar', 'data/')

• To extract, use shutil.unpack_archive

32

[V. Ndlovu]
D. Koop, CSCI 503/490, Spring 2023

https://realpython.com/working-with-files-in-python/

