Programming Principles in Python (CSCI 503/490)

Debugging & Testing

Dr. David Koop

D. Koop, CSCI 503/490, Spring 2023

Dealing with Errors

e Can explicitly check for errors at each step
- Check for division by zero
- Check for invalid parameter value (e.g. string instead of int)
e Sometimes all of this gets in the way and can't be addressed succinctly
- oo many potential errors to check
- Cannot handle groups of the same type of errors together
e Allow programmer to determine when and how to handle issues
- Allow things to go wrong and handle them instead
- Allow errors to be propagated and addressed once

D. Koop, CSCI 503/490, Spring 2023 Northern Illinois University 2

Advantages of exceptions

e Separate error-handling code from “regular” code
e Allows propagation of errors up the call stack
® Frrors can be grouped and differentiated

[Java Tutorial, Oracle]

D. Koop, CSCI 503/490, Spring 2023 Northern Illinois University 3

https://docs.oracle.com/javase/tutorial/essential/exceptions/advantages.html

Iry-Except

e [he try statement has the following form:
try:
<body>
except <ErrorType>~*:
<handler>

e \When Python encounters a try statement, it attempts to execute the
statements inside the body.

e |f there Is NO error, control passes to the next statement after the try...
except (Unless else Or £inally clauses)

e Note: except not catch

D. Koop, CSCI 503/490, Spring 2023 Northern Illinois University 4

Exception Granularity

® |f you catch any exception using a base class near the top of the hierarchy,
you may be masking code errors
o Lry:
c, d=a /b

except Exception:
c, d =20, 0O

e Remember Exception catches any exception is an instance of Exception

e Catches TypeError: cannot unpack non-iterable float object

e Better to have more granular (specific) exceptions!

e \\Ve don't want to catch the Typekrror because this Is a programming error
Nnot a runtime error

D. Koop, CSCI 503/490, Spring 2023 Northern Illinois University 5

=xception Locality

® Lrv:

fname 'missing-file.dat'
with open(fname) as f:
lines = f.readlines ()
except OSError:
print (f"An error occurred reading {fname}")
trv:
out fname = 'output-file.dat'
with open ('output-file.dat', 'w') as fout:
fout.write ("Testing")
except OSError:
print (f"An error occurred writing {out fname}")

. Koop, CSCI 503/490, Spring 2023 Northern Illinois University 6

Multiple Except Clauses

e Function like an if/elif sequence

e Checked in order so put more granular exceptions earlier!
® Lry:

fname 'missing-file.dat'
with open(fname) as f:

lines = f.readlines ()
out fname = 'output-file.dat'
with open ('output-file.dat', 'w') as fout:

fout.write ("Testing")
except FileNotFoundError:

print (f"File {fname} does not exist")
except OSError:

print ("An error occurred processing files")

D. Koop, CSCI 503/490, Spring 2023 Northern Illinois University 7

Handling Multiple Exceptions at Once

e Can process multiple exceptions with one clause, use tuple of classes

o Allows some specificity but without repeating
o Lry:

fname = 'missing-file.dat'

with open(fname) as f:

lines = f.readlines ()

out fname = 'output-file.dat'

with open ('output-file.dat', 'w') as fout:

fout.write ("Testing")

except (FileNotFoundError, PermissionError) :
print ("An error occurred processing files")

D. Koop, CSCI 503/490, Spring 2023 Northern Illinois University 8

Assignment 6

e Upcoming
e Object-Oriented Programming

D. Koop, CSCI 503/490, Spring 2023 Northern Illinois University 9

lest 2

e \Nednesday, April 5, 2023 In class from 11am-12:15pm
e Similar Format to Test 1

e Emphasizes topics covered since lest 1, but still need to know core
concepts from the first third of the course

D. Koop, CSCI 503/490, Spring 2023 Northern Illinois University 10

http://faculty.cs.niu.edu/~dakoop/cs503-2023sp/test2.html

Exception Objects

o E-xceptions themselves are a type of object.

¢ |f you follow the error type with an identifier in an except clause, Python will
assign that identifier the actual exception object.

e Sometimes exceptions encode information that is useful for handling
o Lry:

fname 'missing-file.dat'
with open (fname) as f:

lines = f.readllnes ()
out fname = 'output-file.dat'
with open('output-file.dat', 'w') as fout:

fout.write ("Testing")
except OSError as e:
print (e.errno, e.filename, e)

D. Koop, CSCI 503/490, Spring 2023 Northern Illinois University 11

EFlse Clause

e Code that executes if N0 exception occurs

o b = 3
a = 2
try:
c =b / a

except ZeroDivisilionError:
print ("Division failed")
c = 0
else:
print ("Division successful:", c)

D. Koop, CSCI 503/490, Spring 2023 Northern Illinois University 12

Finally

e Code that always runs, regardless of whether there is an exception

o b = 3
a = 0
try:
c =b / a

except ZeroDivisilionError:
print ("Division failed")
c = 0

finally:
print ("This always runs")

. Koop, CSCI 503/490, Spring 2023 Northern Illinois University 13

Finally

e Code that always runs, regardless of whether there is an exception

e . .even If the exception isn't handled!
o b = 3
a = 0
Cry:
c = b / a
finally:
print ("This always runs, even if we crash")

e Remember that context managers (e.q. for files) have built-in cleanup clauses

D. Koop, CSCI 503/490, Spring 2023 Northern Illinois University 14

Nesting

® You can nest try-except clauses inside of except clauses, too.

o Example: perhaps a file load could fail so you want to try an alternative
location but want to know If that fails, too.

e Canevendothisina finally clause:

® Lry:
c =Db / a
finally:
try:
print ("This always runs", 3/0)
except ZeroDivisionError:
print ("It 1s si1lly to only catch thilis exception")

D. Koop, CSCI 503/490, Spring 2023 Northern Illinois University 15

Raising Exceptions

e Create an exception and raise it using the raise keyword
e Pass a string that provides some detall

® Examp\e: ralse Exception("This did not work correctly")

e [ry to find a exception class:
- ValueError: If an argument doesn't fit the function's expectations

- NotImplementedError: If @ method isn't implemented (e.g. abstract cls)

e Be specific In the error message, state actual values

e Can also subclass from existing exception class, but check if existing
exception works first

e Some packages create their own base exception class (RequestException)

D. Koop, CSCI 503/490, Spring 2023 Northern Illinois University 16

Re-raising and Raising From

e Sometimes, we want to detect an exception but also pass it along

e try:
C b / a
except ZeroDivisilonError:
print ("Division failed")
ralse

e Raising from allows exception to show specific chain of issues

o Lry:
C b / a
except ZeroDivisionError as e:
print ("Division failed")
ralse ValueError ("a cannot be zero") from e

e Usually unnecessary because Python does the right thing here (shows chain)

D. Koop, CSCI 503/490, Spring 2023 Northern Illinois University 17

Making Sense of Exceptions

e \\When code (e.q. a cell) crashes, read the traceback:

o ZeroDivilisionkError Traceback (most recent call last)
<lpython-1nput-58-488e9/ad/d/74> 1n <module>
4 return divide (at+b, a-b)
5 for 1 1n range(4):
> 0 process (3, 1)
<lpython-input-58-488e9/7ad/d/4> 1n process(a, Db)
3 return ¢ / d
> 4 return divide (a+b, a-b)

5 for 1 1n range(4):
<lpython-input-58-488e9/7ad/d/4> 1in divide(c, d)

% def divide (c, d):
> 3 return ¢ / d
4 return divide (a+tb, a-b)

ZeroDivisionError: divilision by zero

. Koop, CSCI 503/490, Spring 2023 Northern Illinois University ~ 18

Making Sense of Exceptions

o Start at the bottom: last line is the exception message
e Nesting goes outside-in: innermost scope Is last, outermost scope Is first
e Arrows point to the line of code that caused errors at each scope

e Surrounding lines give context

D. Koop, CSCI 503/490, Spring 2023 Northern Illinois University 19

Making Sense of Exceptions

e Sometimes, exception handling can mask actual issue!

e def process(a, b):

for 1 1n range(4) :
trv:
process (3, 1)
except ZeroDivisionError:

ralse Exception (f"Cannot process 1={1}") from None
e Exception Traceback (most recent call last)
<lpython-i1nput-60-6d0289010945> 1n <module>
] process (3, 1)
3 except ZeroDivisionError:
-——=> 9 ralse Exception (f"Cannot process 1={1}") from None

Exception: Cannot process 1=3

e Usually, Python includes inner exception (Erom None Stops the chain)

D. Koop, CSCI 503/490, Spring 2023 Northern Illinois University 20

Making Sense of Exceptions

e Probably the worst thing Is to ignore all exceptions:

—

o def

process (a, b):

result = []
for 1 1n range(06) :
trv:
result.append (process (3, 1))
except:
Pass

e [his may seem like the easy way out, don't have to worry about errors, but
can mask major issues in the code!

e Be specific (granularity), try to handle cases when something goes wrong,
crash gracefully if it is an unexpected error

D. Koop, CSCI 503/490, Spring 2023 Northern Illinois University 21

Python 3.11: Fine-Grained Error Locations

e Code is faster (10-60% faster than 3.10, 25% average on benchmark)
e Debugging: Errors can show more specific locations
e Old Error:

- Traceback (most recent call last) :
Fi1le "distance.py", line 11, 1n <module>
print (manhattan distance (pl, p2))
File "distance.py", line 6, 1n manhattan distance
return abs(pt 1.x - pt 2.x) + abs(pt 1.y - pt 2.vy)
AttributeError: 'NoneType' object has no attribute 'x'

D. Koop, CSCI 503/490, Spring 2023 Northern Illinois University 22

Python 3.11: Fine-Grained Error Locations

e New Error:

- Traceback (mos

—d

recent call

Fi1le "distance.py", line
print (manhattan distance (pl, p2))

ANNNNANANANNNANANANNNANANANNNANAANNNNANANNN

Fi1le "distance.py", line
return abs(pt 1.x - pt 2.x) + abs(pt 1.y - pt 2.vy)

AttributeError:

. Koop, CSCI 503/490, Spring 2023

ANANAN

"NoneType'

last) :
11, 1n <module>

0, 1n manhattan distance

ANWANAN

object has no attribute 'x'

Northern Illinois University 23

Python 3.11: Fine-Grained Error Locations

o Traceback (most recent call last):
File "querv.py", line 37, 1n <module>
maglc arithmetic('foo')
File "query.py", line 18, 1n maglc arilthmetic
return add counts(x) / 25

NNNNNANANANNNNANNANAN

File "query.py", line 24, 1n add counts

return 25 + query user (userl) + query user (userl)
File "query.py", line 32, 1n query user

return count (db, responsel['a']J['b']["'c"'"]['user'])

VIR Ve Ve VNV IR VENVENe VNV NV VANV ENeVINAVIRaV N, VN VNG

TypeError: 'NoneType' object 1s not subscriptable

D. Koop, CSCI 503/490, Spring 2023 Northern Illinois University =~ 24

How do you debug code”

D. Koop, CSCI 503/490, Spring 2023 Northern Illinois University 25

Debugging

® print statements

® |[0gqing library

e DAD

e Extensions for IDEs (e.g. PyCharm)
e Jupyterl.ab Debugger Support

D. Koop, CSCI 503/490, Spring 2023 Northern Illinois University 26

https://jupyterlab.readthedocs.io/en/stable/user/debugger.html

Print Statements

e Just print the values or other information about identifiers:

—

e def my function(a, b):
print (a, Db)
print (b - a == 0)
return a b

e Note that we need to remember what is being printed

e Can add this to print call, or use f-strings with trailing = which causes the
name and value of the variable to be printed

—

e def my function(a, b):
print (£f"{a=} {b=} {b - a == 0}")
return a + Db

D. Koop, CSCI 503/490, Spring 2023 Northern Illinois University 27

Print Problems

e Have to uncomment/comment

e Have to remember to get rid of (or comment out) debugging statements
when publishing code

e Print can dump a lot of text (slows down notebooks)
e Can try to be smarter:

- 1f 1 % 100 ==
print (1, f"{current output=}")
- do print = value == 4Z
1f do print:
print (f"{a=} {current output=}")

D. Koop, CSCI 503/490, Spring 2023 Northern Illinois University ~ 28

. ogging Library

e Allows different levels of output (e.g. DEBUG, INFO, WARNING, ERROR
CRITICAL)

e Can output to a file as well as stdout/stderr
e Can configure to suppress certain levels or filter messages

e 1mport logglng
def my function(a,b):
logging.debug (f"{a=} {b=} {b-a == 0}")
return a + b
my function (3, 5)

e [his doesn't work In notebooks...

D. Koop, CSCI 503/490, Spring 2023 Northern Illinois University 29

. ogging Library

e Need to set default level (e.g. DEBUG)
e -or notebooks, best to define own logger and set level

e 1mport logging

logger = logging.Logger ('my-logger')
logger.setlLevel (loggling.DEBUG)

def my function(a,b):

ogger .debug
return a + D

(f"{a=} {b=} {b-a ==

my function (3, 5)

® Prints on stderr, can set to stdout via:

e 1mport sys

loggilng.basicCon:

f1g (stream=sys.stdout,

P

level=1logging.DEBUG)

Northern Illinois University 30

D. Koop, CSCI 503/490, Spring 2023

Python Debugger (pdb)

e Debuggers offer the ability to inspect and interact with code as It Is running
- Define breakpoints as places to stop code and enter the delbugger
- Commands to inspect variables and step through code
- Different types of steps (into, over, continue)
- Can have multiple breakpoints in a piece of code
e [here are a number of debuggers like those bullt into IDEs (e.g. PyCharm)
e ndb is standard Python, also an ipdb variant for IPython/notebooks

D. Koop, CSCI 503/490, Spring 2023 Northern Illinois University 31

Python Debugger

e Post-mortem Inspection:

- In the notebook, use $debug INn a new cell to inspect at the line that raised
the exception

e Can have this happen all the time using $pdb Mmagic

* Brings up a new panel that allows debugging interactions
- In a script, run the script using pdb:

* python -m pdb my script.py

D. Koop, CSCI 503/490, Spring 2023 Northern Illinois University ~ 32

Python Debugger

e Breakpoints
- o set a breakpoint, simply add a breakpoint () call in the code

- Before Python 3.7, this required import pdb; pdb.set trace ()
- Run the cell/script as normal and pdb will start when it hits the breakpoint

> <ipython-input-1-792bb5fe2598>(3)divide()
1 def process(a, b):
2 def divide(c, d):
—_—> 3 return ¢ / d
4 return divide(a+b, a-b)
5 result = []

ipdb>

D. Koop, CSCI 503/490, Spring 2023 Northern Illinois University ~ 33

Python Debugger Commands

e p [print expressions|: Print expressions, comma separated

e n [step over]: continue until next line in current function

e s [step INto]: stop at next line of code (same function or one being called)
e ¢ [continuel: continue execution until next breakpoint

e 1 [list codel: list source code (ipdb does this already), also 11 (fewer lines)
e b [breakpoints|: list or set new breakpoint (with line number)

e v [print stack trace]: Prints the stack (like what notebook shows during
traceback), u and d commands move up/down the stack

e g [quit]: quit
e h [help]: help (there are many other commands)

D. Koop, CSCI 503/490, Spring 2023 Northern Illinois University 34

Jupyter Debugging Support

: File Edit View Run Kernel Tabs Settings Help
»| addition.ipynb X ADDITION.IPYNE
. VARIABLES é
B + XO [» m C » Code v {1 xpython O #% @D
o []: 1 def add(a, b):
2 res =a+b
Eg‘ 3 return res
1 res = add(1, 2)
& 2 res +=1
b
res
CALLSTACK
3 -
h
BREAKPOINTS ¢
SOURCE §
0 1 {8 xpython | Idle Saving completed Mode: Command & Ln1, Col14 addition.ipynb

D. Koop, CSCI 503/490, Spring 2023 @ Northern Illinois University 35

Jupyter Debugging Support

: File Edit View Run Kernel Tabs Settings Help
»| addition.ipynb X ADDITION.IPYNE
. VARIABLES é
B + XO [» m C » Code v {1 xpython O #% @D
o []: 1 def add(a, b):
2 res =a+b
Eg‘ 3 return res
1 res = add(1, 2)
& 2 res +=1
b
res
CALLSTACK
3 -
h
BREAKPOINTS ¢
SOURCE §
0 1 {8 xpython | Idle Saving completed Mode: Command & Ln1, Col14 addition.ipynb

D. Koop, CSCI 503/490, Spring 2023 @ Northern Illinois University 35

How do you test code”

D. Koop, CSCI 503/490, Spring 2023 Northern Illinois University 36

lesting

¢ |[f statements

o Assert statements
e Unit Testing

¢ |ntegration lesting

D. Koop, CSCI 503/490, Spring 2023 Northern Illinois University 37

Testing via Print/If Statements

e Can make sure that types or values satisfy expectations

e 1f not 1sinstance(a, str):
ralse Exception("a 1s not a string")

—

o 1f 3 < a <= T7:
ralse Exception("a should not be 1n (3,7]")

® [hese may not be something we need to always check during runtime

D. Koop, CSCI 503/490, Spring 2023 Northern Illinois University ~ 38

Assertions

e Shortcut for the manual if statements
e Have python throw an exception If a particular condition is not met
* assert IS a keyword, part of a statement, not a function

e assert a == 1, "a 1s not 1"

e Raises AssertionError If the condition IS Not met, otherwise continues

e Can be caught in an except clause or made to crash the code
e Problem: first fallure ends error checks

D. Koop, CSCI 503/490, Spring 2023 Northern Illinois University 39

Unit Tests

¢ "[esting shows the presence, not the absence of bugs”, E. Dikstra
e \Vant to test many parts of the code
e [ry to cover different functions that may or may not be called

e \\Vrite functions that test code

e def add(a, Db):
return a + b + 1

def test add():
assert add(3,4) == 7, "add not working"
def test operator():
assert operator.add(3,4) == 7, " add not working"

o |f we Just call these In a program, first error stops all testing

D. Koop, CSCI 503/490, Spring 2023 Northern Illinois University 40

Unit Testing Framework

e unittest: built in to Python Standard Library

® NOseZ: nose tests, was nose, now nose?Z (some nicer filtering options)
e pytest: extra features like restarting tests from last failed test

e doctest: built-in, allows test specitication In docstrings

o \Vith the exception of doctest, the frameworks allow the same specification
of tests

D. Koop, CSCI 503/490, Spring 2023 Northern Illinois University 41

unittest

e Subclass from unittest.TestCase, Write test * functions
e Use assert* Instance functions

e IMport unittest

class TestOperators (unittest.TestCase) :
def test add(self):
self.assertEqual (add (3, 4), 7)

def test add op(self):
self.assertEqual (operator.add(3,4), 7)
unittest.main(argv=["'"'], exit=False)

D. Koop, CSCI 503/490, Spring 2023 Northern Illinois University ~ 42

