
Programming Principles in Python (CSCI 503/490)

Object-Oriented Programming

Dr. David Koop

D. Koop, CSCI 503/490, Spring 2023

Classes and Instances in Python
• Class Definition:

- class Vehicle:
 def __init__(self, make, model, year, color):
 self.make = make
 self.model = model
 self.year = year
 self.color = color

 def age(self):
 return 2022 - self.year

• Instances:
- car1 = Vehicle('Toyota', 'Camry', 2000, 'red')

- car2 = Vehicle('Dodge', 'Caravan', 2015, 'gray')

2D. Koop, CSCI 503/490, Spring 2023

Visibility
• In some languages, encapsulation allows certain attributes and methods to

be hidden from those using an instance
• public (visible/available) vs. private (internal only)
• Python does not have visibility descriptors, but rather conventions (PEP8)
- Attributes & methods with a leading underscore (_) are intended as private
- Others are public
- You can still access private names if you want but generally shouldn't:

• print(car1._color_hex)

- Double underscores leads to name mangling:
self.__internal_vin is stored at self._Vehicle__internal_vin

3D. Koop, CSCI 503/490, Spring 2023

Properties
• Properties allow transformations and checks but are accessed like attributes
• getter and setter have same name, but different decorators
• Decorators (@<decorator-name>) do some magic
• @property
def age(self):
 return 2021 - self.year

• @age.setter
def age(self, age):
 self.year = 2021 - age

• Using property:
- car1.age = 20

4D. Koop, CSCI 503/490, Spring 2023

Exercise
• Create Stack and Queue classes
- Stack: last-in-first-out
- Queue: first-in-first-out

• Define constructor and push and pop methods for each

5D. Koop, CSCI 503/490, Spring 2023

Inheritance
• Is-a relationship: Car is a Vehicle, Truck is a Vehicle
• Make sure it isn't composition (has-a) relationship: Vehicle has wheels,

Vehicle has a steering wheel
• Subclass is specialization of base class (superclass)
- Car is a subclass of Vehicle, Truck is a subclass of Vehicle

• Can have an entire hierarchy of classes (e.g. Chevy Bolt is subclass of Car
which is a subclass of Vehicle)

• Single inheritance: only one base class
• Multiple inheritance: allows more than base class
- Many languages don't support, Python does

6D. Koop, CSCI 503/490, Spring 2023

Instance Attribute Conventions in Python
• Remember, the naming is the convention
• public: used anywhere
• _protected: used in class and subclasses
• __private: used only in the specific class
• Note that double underscores induce name mangling to strongly discourage

access in other entities

7D. Koop, CSCI 503/490, Spring 2023

Subclass
• Just put superclass(-es) in parentheses after the class declaration
• class Car(Vehicle):
 def __init__(self, make, model, year, color, num_doors):
 super().__init__(make, model, year, color)
 self.num_doors = num_doors

 def open_door(self):
 …

• super() is a special method that locates the base class
- Constructor should call superclass constructor
- Extra arguments should be initialized and extra instance methods

8D. Koop, CSCI 503/490, Spring 2023

Overriding Methods
• class Rectangle:
 def __init__(self, height,
 width):
 self.h = height
 self.w = weight

 def set_height(self, height):
 self.h = height
 def area(self):
 return self.h * self.w

• class Square(Rectangle):
 def __init__(self, side):
 super().__init__(side, side)

 def set_height(self, height):
 self.h = height
 self.w = height

9D. Koop, CSCI 503/490, Spring 2023

Assignment 5
• Due Friday
• Writing a Python Package and Command-Line Tools
• Same Pokémon data
• Analysis and Comparison
• Create package and command-line tool

10D. Koop, CSCI 503/490, Spring 2023

http://faculty.cs.niu.edu/~dakoop/cs503-2023sp/assignment5.html

Quiz Wednesday
• Quiz on Object-Oriented Programming

11D. Koop, CSCI 503/490, Spring 2023

Class and Static Methods
• Use @classmethod and @staticmethod decorators
• Difference: class methods receive class as argument, static methods do not
• class Square(Rectangle):
 DEFAULT_SIDE = 10
 …

 @classmethod
 def set_default_side(cls, s):
 cls.DEFAULT_SIDE = s

 @staticmethod
 def set_default_side_static(s):
 Square.DEFAULT_SIDE = s

12D. Koop, CSCI 503/490, Spring 2023

Class and Static Methods
• class Square(Rectangle):
 DEFAULT_SIDE = 10

 def __init__(self, side=None):
 if side is None:
 side = self.DEFAULT_SIDE
 super().__init__(side, side)
 …

• Square.set_default_side(20)
s2 = Square()
s2.side # 20

• Square.set_default_side_static(30)
s3 = Square()
s3.side # 30

13D. Koop, CSCI 503/490, Spring 2023

Class and Static Methods
• class NewSquare(Square):
 DEFAULT_SIDE = 100

• NewSquare.set_default_side(200)
s5 = NewSquare()
s5.side # 200

• NewSquare.set_default_side_static(300)
s6 = NewSquare()
s6.side # !!! 200 !!!

• Why?
- The static method sets Square.DEFAULT_SIDE not the
NewSquare.DEFAULT_SIDE

- self.DEFAULT_SIDE resolves to NewSquare.DEFAULT_SIDE

14D. Koop, CSCI 503/490, Spring 2023

Checking type
• We can check the type of a Python object using the type method:

- type(6) # int

- type("abc") # str

- s = Square(4)

- type(s) # Square

• Allows comparisons:
- if type(s) == Square:
 # …

• But this is False:
- if type(s) == Rectangle:
 # …

15D. Koop, CSCI 503/490, Spring 2023

Checking InstanceOf/Inheritance
• How can we see if an object is an instance of a particular class or whether a

particular class is a subclass of another?
• Both check is-a relationship (but differently)
• issubclass(cls1, cls2): checks if cls1 is-a (subclass of) cls2
• isinstance(obj, cls): checks if obj is-a(n instance of) cls
• Note that isinstance is True if obj is an instance of a class that is a

subclass of cls
- car = Car('Toyota','Camry', 2000, 'red', 4)
isinstance(car, Vehicle) # True

16D. Koop, CSCI 503/490, Spring 2023

Interfaces
• In some languages, can define an abstract base class
- The structure is defined but without implementation
- Alternatively, some methods are defined abstract, others are implemented

• Interfaces are important for types
- Method can specify a particular type that can be abstract
- This doesn't matter as much in Python

• However, Python does have ABCs (Abstract Base Classes)
- Solution to be able to check for mappings, sequences via isinstance, etc.
- abc.Mapping, abc.Sequence, abc.MutableSequence

17D. Koop, CSCI 503/490, Spring 2023

Duck Typing
• "If it looks like a duck and quacks like a duck, it must be a duck."
• Python "does not look at an object’s type to determine if it has the right

interface; instead, the method or attribute is simply called or used"
• class Rectangle:
 def area(self):
 …

• class Circle:
 def area(self):
 …

• It doesn't matter that they don't have a common base class as long as they
respond to the methods/attributes we expect: shape.area()

18

[Python Glossary]
D. Koop, CSCI 503/490, Spring 2023

https://docs.python.org/3/glossary.html#term-duck-typing

Multiple Inheritance
• Can have a class inherit from two different superclasses
• HybridCar inherits from Car and Hybrid
• Python allows this!

- class HybridCar(Car, Hybrid): …

• Problem: how is super() is defined?
- Diamond Problem
- Python use the method resolution order (MRO) to determine order of calls

19D. Koop, CSCI 503/490, Spring 2023

Method Resolution Order
• The order in which Python checks classes for a method
• mro() is a class method
• Square.mro() # [__main__.Square, __main__.Rectangle, object]

• Order of base classes matters:
- class HybridCar(Car, Hybrid):
 pass
HybridCar.mro() # [__main__.HybridCar, __main__.Car,
 __main__.Hybrid, __main__.Vehicle, object]

- class HybridCar(Hybrid, Car):
 pass
HybridCar.mro() # [__main__.HybridCar, __main__.Hybrid,
 __main__.Car, __main__.Vehicle, object]

20D. Koop, CSCI 503/490, Spring 2023

Operator Overloading
• Dunder methods (__add__, __contains__, __len__)
• Example:

- class Square(Rectangle):
 …
 @property
 def side(self):
 return self.h
 def __add__(self, right):
 return Square(self.side + right.side)
 def __repr__(self):
 return f'{self.__class__.__name__}({self.side})'
new_square = Square(8) + Square(4)
new_square # Square(12)

21D. Koop, CSCI 503/490, Spring 2023

Operator Overloading Restrictions
• Precedence cannot be changed by overloading. However, parentheses can

be used to force evaluation order in an expression.
• The left-to-right or right-to-left grouping of an operator cannot be changed
• The “arity” of an operator—that is, whether it’s a unary or binary operator—

cannot be changed.
• You cannot create new operators—only overload existing operators
• The meaning of how an operator works on objects of built-in types cannot be

changed. You cannot change + so that it subtracts two integers
• Works only with objects of custom classes or with a mixture of an object of a

custom class and an object of a built-in type.

22

[Deitel & Deitel]
D. Koop, CSCI 503/490, Spring 2023

Ternary Operator
• a = b < 5 ? b + 5 : b - 5

• Kind of a weird construct, but can be a nice shortcut
• Python does this differently:
• <value> if <condition> else <value>

• Example: absx = x if x >= 0 else -x
• Reads so that the usual is listed first and the abnormal case is listed last
• "Usually this, else default to this other"

23D. Koop, CSCI 503/490, Spring 2023

Mixins
• Sometimes, we just want to add a particular method to a bunch of different

classes
• For example: print_as_dict()
• A mixin class allows us to specify one or more methods and add it as the

second
• Caution: Python searches from left to right so a base class should be at the

right with mixing

24D. Koop, CSCI 503/490, Spring 2023

Object-Based Programming
• With Python's libraries, you often don't need to write your own classes. Just
- Know what libraries are available
- Know what classes are available
- Make objects of existing classes
- Call their methods

• With inheritance and overriding and polymorphism, we have true object-
oriented programming (OOP)

25

[Deitel & Deitel]
D. Koop, CSCI 503/490, Spring 2023

