
Programming Principles in Python (CSCI 503/490)

Files

Dr. David Koop

(some slides adapted from Dr. Reva Freedman)

D. Koop, CSCI 503/490, Spring 2023

Unicode and ASCII
• Conceptual systems
• ASCII:
- old, English-centric, 7-bit system (only 128 characters)

• Unicode:
- Can represent over 1 million characters from all languages + emoji 🎉
- Characters have hexadecimal representation: é = U+00E9 and

name (LATIN SMALL LETTER E WITH ACUTE)
- Python allows you to type "é" or represent via code "\u00e9"

• Codes: ord → character to integer, chr → integer to character

2D. Koop, CSCI 503/490, Spring 2023

Strings
• Objects with methods
• Finding and counting substrings: count, find, startswith
• Removing leading & trailing substrings/whitespace: strip, removeprefix
• Transforming Text: replace, upper, lower, title
• Checking String Composition: isalnum, isnumeric, isupper
• Splitting & Joining:

- names = str.split(', ')

- ', '.join(names)

-

3D. Koop, CSCI 503/490, Spring 2023

Format and f-Strings
• s.format: templating function
- Replace fields indicated by curly braces with corresponding values
- "My name is {} {}".format(first_name, last_name)

- "My name is {first_name} {last_name}.format(
 first_name=name[0], last_name=name[1])

• Formatted string literals (f-strings) reference variables directly!
- f"My name is {first_name} {last_name}"

• Can include expressions, too:
- f"My name is {name[0].capitalize()} {name[1].capitalize()}"

• Format mini-language allows specialized displays (alignment, numeric
formatting)

4D. Koop, CSCI 503/490, Spring 2023

https://docs.python.org/3/library/string.html#format-specification-mini-language

Regular Expressions
• AKA regex
• A syntax to better specify how to decompose strings
• Look for patterns rather than specific characters
• Metacharacters: . ^ $ * + ? { } [] \ | ()
- Repeat, one-of-these, optional

• Character Classes: \d (digit), \s (space), \w (word character), also \D, \S, \W
• Digits with slashes between them: \d+/\d+/\d+
• Usually use raw strings (no backslash plague): r'\d+/\d+/\d+'

5D. Koop, CSCI 503/490, Spring 2023

Regular Expression Methods

6

[Deitel & Deitel]
D. Koop, CSCI 503/490, Spring 2023

Method/
Attribute Purpose

match() Determine if the RE matches at the beginning of the string.
search() Scan through a string, looking for any location where this RE matches.
findall() Find all substrings where the RE matches, and returns them as a list.
finditer() Find all substrings where the RE matches, and returns them as an iterator.
split() Split the string into a list, splitting it wherever the RE matches
sub() Find all substrings where the RE matches, and replace them with a different string
subn() Does the same thing as sub(), but returns the new string & number of replacements

https://docs.python.org/3/glossary.html#term-iterator

Regular Expresion Examples
• s0 = "No full dates here, just 02/15"
s1 = "02/14/2021 is a date"
s2 = "Another date is 12/25/2020"
s3 = "April Fools' Day is 4/1/2021 & May the Fourth is 5/4/2021"

• re.match(r'\d+/\d+/\d+',s1) # returns match object

• re.match(r'\d+/\d+/\d+',s2) # None!

• re.search(r'\d+/\d+/\d+',s2) # returns 1 match object

• re.search(r'\d+/\d+/\d+',s3) # returns 1! match object

• re.findall(r'\d+/\d+/\d+',s3) # returns list of strings

• re.finditer(r'\d+/\d+/\d+',s3) # returns iterable of matches

• re.sub(r'(\d+)/(\d+)/(\d+)',r'\3-\1-\2',s3)
 # captures month, day, year, and reformats

7D. Koop, CSCI 503/490, Spring 2023

Grouping
• Parentheses capture a group that can be accessed or used later
• Access via groups() or group(n) where n is the number of the group, but

numbering starts at 1
• Note: group(0) is the full matched string
• for match in re.finditer(r'(\d+)/(\d+)/(\d+)',s3):
 print(match.groups())

• for match in re.finditer(r'(\d+)/(\d+)/(\d+)',s3):
 print('{2}-{0:02d}-{1:02d}'.format(
 *[int(x) for x in match.groups()]))

• * operator expands a list into individual elements

8D. Koop, CSCI 503/490, Spring 2023

Modifying Strings

9D. Koop, CSCI 503/490, Spring 2023

Method/Attribute Purpose

split() Split the string into a list, splitting it wherever the
RE matches

sub() Find all substrings where the RE matches, and
replace them with a different string

subn() Does the same thing as sub(), but returns the new
string and the number of replacements

Substitution
• Do substitution in the middle of a string:
• re.sub(r'(\d+)/(\d+)/(\d+)',r'\3-\1-\2',s3)

• All matches are substituted
• First argument is the regular expression to match
• Second argument is the substitution
- \1, \2, … match up to the captured groups in the first argument

• Third argument is the string to perform substitution on
• Can also use a function:
• to_date = lambda m:
f'{m.group(3)}-{int(m.group(1)):02d}-{int(m.group(2)):02d}'
re.sub(r'(\d+)/(\d+)/(\d+)', to_date, s3)

10D. Koop, CSCI 503/490, Spring 2023

Assignment 4
• Assignment will cover strings and files
• Reading & writing data to files
• Dealing with characters and encodings

11D. Koop, CSCI 503/490, Spring 2023

12

Files

D. Koop, CSCI 503/490, Spring 2023

Files
• A file is a sequence of data stored on disk.
• Python uses the standard Unix newline character (\n) to mark line breaks.
- On Windows, end of line is marked by \r\n, i.e., carriage return + newline.
- On old Macs, it was carriage return \r only.
- Python converts these to \n when reading.

13D. Koop, CSCI 503/490, Spring 2023

Opening a File
• Opening associates a file on disk with an object in memory (file object or file

handle).
• We access the file via the file object.
• <filevar> = open(<name>, <mode>)

• Mode 'r' = read or 'w' = write, 'a' = append
• read is default
• Also add 'b' to indicate the file should be opened in binary mode: 'rb','wb'

14D. Koop, CSCI 503/490, Spring 2023

Standard File Objects
• When Python begins, it associates three standard file objects:

- sys.stdin: for input
- sys.stdout: for output
- sys.stderr: for errors

• In the notebook
- sys.stdin isn't really used, get_input can be used if necessary
- sys.stdout is the output shown after the code
- sys.stderr is shown with a red background

15D. Koop, CSCI 503/490, Spring 2023

Files and Jupyter
• You can double-click a file to see its contents (and edit it manually)
• To see one as text, may need to right-click
• Shell commands also help show files in the notebook
• The ! character indicates a shell command is being called
• These will work for Linux and macos but not necessarily for Windows
• !cat <fname>: print the entire contents of <fname>
• !head -n <num> <fname>: print the first <num> lines of <fname>
• !tail -n <num> <fname>: print the last <num> lines of <fname>

16D. Koop, CSCI 503/490, Spring 2023

Reading Files
• Use the open() method to open a file for reading

- f = open('huck-finn.txt')

• Usually, add an 'r' as the second parameter to indicate read (default)
• Can iterate through the file (think of the file as a collection of lines):

- f = open('huck-finn.txt', 'r')
for line in f:
 if 'Huckleberry' in line:
 print(line.strip())

• Using line.strip() because the read includes the newline, and print
writes a newline so we would have double-spaced text

• Closing the file: f.close()

17D. Koop, CSCI 503/490, Spring 2023

Remember Encodings (Unicode, ASCII)?
• Encoding: How things are actually stored
• ASCII "Extensions": how to represent characters for different languages
- No universal extension for 256 characters (one byte), so…
- ISO-8859-1, ISO-8859-2, CP-1252, etc.

• Unicode encoding:
- UTF-8: used in Python and elsewhere (uses variable # of 1—4 bytes)
- Also UTF-16 (2 or 4 bytes) and UTF-32 (4 bytes for everything)
- Byte Order Mark (BOM) for files to indicate endianness (which byte first)

18D. Koop, CSCI 503/490, Spring 2023

Encoding in Files
• all_lines = open('huck-finn.txt').readlines()
all_lines[0] # '\ufeff\n'

• \ufeff is the UTF Byte-Order-Mark (BOM)
• Optional for UTF-8, but if added, need to read it
• a = open('huck-finn.txt', encoding='utf-8-sig').readlines()
a[0] # '\n'

• No need to specify UTF-8 (or ascii since it is a subset)
• Other possible encodings:
- cp1252, utf-16, iso-8859-1

19D. Koop, CSCI 503/490, Spring 2023

Other Methods for Reading Files
• read(): read the entire file
• read(<num>): read <num> characters (bytes)

- open('huck-finn.txt', encoding='utf-8-sig').read(100)

• readlines(): read the entire file as a list of lines
- lines = open('huck-finn.txt', encoding='utf-8-sig').readlines()

20D. Koop, CSCI 503/490, Spring 2023

Reading a Text File
• Try to read a file at most once
• f = open('huck-finn.txt', 'r')
for i, line in enumerate(f):
 if 'Huckleberry' in line:
 print(line.strip())
for i, line in enumerate(f):
 if "George" in line:
 print(line.strip())

• Can't iterate twice!
• Best: do both checks when reading the file once
• Otherwise: either reopen the file or seek to beginning (f.seek(0))

21D. Koop, CSCI 503/490, Spring 2023

Parsing Files
• Dealing with different formats, determining more meaningful data from files
• txt: text file
• csv: comma-separated values
• json: JavaScript object notation
• Jupyter also has viewers for these formats
• Look to use libraries to help possible

- import json

- import csv

- import pandas

• Python also has pickle, but not used much anymore

22D. Koop, CSCI 503/490, Spring 2023

Comma-separated values (CSV) Format
• Comma is a field separator, newlines denote records

- a,b,c,d,message
1,2,3,4,hello
5,6,7,8,world
9,10,11,12,foo

• May have a header (a,b,c,d,message), but not required
• No type information: we do not know what the columns are (numbers,

strings, floating point, etc.)
- Default: just keep everything as a string
- Type inference: Figure out the type to make each column based on values

• What about commas in a value? → double quotes

23D. Koop, CSCI 503/490, Spring 2023

Python csv module
• Help reading csv files using the csv module

- import csv
with open('persons_of_concern.csv', 'r') as f:
 for i in range(3): # skip first three lines
 next(f)
 reader = csv.reader(f)
 records = [r for r in reader] # r is a list

• or
- import csv
with open('persons_of_concern.csv', 'r') as f:
 for i in range(3): # skip first three lines
 next(f)
 reader = csv.DictReader(f)
 records = [r for r in reader] # r is a dict

24D. Koop, CSCI 503/490, Spring 2023

Writing Files
• outf = open("mydata.txt", "w")

• If you open an existing file for writing, you wipe out the file’s contents. If the
named file does not exist, a new one is created.

• Methods for writing to a file:
- print(<expressions>, file= outf)
- outf.write(<string>)

- outf.writelines(<list of strings>)

• If you use write, no newlines are added automatically
- Also, remember we can change print's ending: print(…, end=", ")

• Make sure you close the file! Otherwise, content may be lost (buffering)
• outf.close()

25D. Koop, CSCI 503/490, Spring 2023

With Statement: Improved File Handling
• With statement does "enter" and "exit" handling:
• In the previous example, we need to remember to call outf.close()
• Using a with statement, this is done automatically:

- with open('huck-finn.txt', 'r') as f:
 for line in f:
 if 'Huckleberry' in line:
 print(line.strip())

• This is important for writing files!
- with open('output.txt', 'w') as f:
 for k, v in counts.items():
 f.write(k + ': ' + v + '\n')

• Without with, we need f.close()

26D. Koop, CSCI 503/490, Spring 2023

Context Manager
• The with statement is used with contexts
• A context manager's enter method is called at the beginning
• …and exit method at the end, even if there is an exception!
• outf = open('huck-finn-lines.txt','w')
for i, line in enumerate(huckleberry):
 outf.write(line)
 if i > 3:
 raise Exception("Failure")

• with open('huck-finn-lines.txt','w') as outf:
 for i, line in enumerate(huckleberry):
 outf.write(line)
 if i > 3:
 raise Exception("Failure")

27D. Koop, CSCI 503/490, Spring 2023

Context Manager
• The with statement is used with contexts
• A context manager's enter method is called at the beginning
• …and exit method at the end, even if there is an exception!
• outf = open('huck-finn-lines.txt','w')
for i, line in enumerate(huckleberry):
 outf.write(line)
 if i > 3:
 raise Exception("Failure")

• with open('huck-finn-lines.txt','w') as outf:
 for i, line in enumerate(huckleberry):
 outf.write(line)
 if i > 3:
 raise Exception("Failure")

27D. Koop, CSCI 503/490, Spring 2023

JavaScript Object Notation (JSON)
• A format for web data
• Looks very similar to python dictionaries and lists
• Example:

- {"name": "Wes",
 "places_lived": ["United States", "Spain", "Germany"],
 "pet": null,
 "siblings": [{"name": "Scott", "age": 25, "pet": "Zuko"},
 {"name": "Katie", "age": 33, "pet": "Cisco"}] }

• Only contains literals (no variables) but allows null
• Values: strings, arrays, dictionaries, numbers, booleans, or null
- Dictionary keys must be strings
- Quotation marks help differentiate string or numeric values

28D. Koop, CSCI 503/490, Spring 2023

Reading JSON data
• Python has a built-in json module

- with open('example.json') as f:
 data = json.load(f)

- with open('example-out.json', 'w') as f:
 json.dump(data, f)

• Can also load/dump to strings:
- json.loads, json.dumps

29D. Koop, CSCI 503/490, Spring 2023

