
Programming Principles in Python (CSCI 503/490)

Lazy Evaluation

Dr. David Koop

(some slides adapted from Dr. Reva Freedman)

D. Koop, CSCI 503/490, Spring 2023

2

Quiz

D. Koop, CSCI 503/490, Spring 2023

Question 1
• Which of the following is a valid comprehension?

(a) [d * 2 if d % 2 == 0 for d in range(10)]
(b) (d * 2 for d in range(10) if d % 2 == 0)
(c) (d * 2 if d % 2 == 0 for d in range(10))
(d) [d * 2 for d in range(10) if d % 2 == 0]

3D. Koop, CSCI 503/490, Spring 2023

Question 2
• Given the function signature def f(a, b=3, c=7), which of the following

expressions runs without an error?
(a) f(a=5)
(b) f(b=5,c=1)
(c) f()
(d) f(3,4,9,2)

4D. Koop, CSCI 503/490, Spring 2023

Question 3
• If s = {'a','b','b','a','b','c'} what is len(s)?

(a) 5
(b) 6
(c) 4
(d) 3

5D. Koop, CSCI 503/490, Spring 2023

Question 4
• Which of the following is not a valid operation on a sequence?

(a) iteration
(b) slicing
(c) membership
(d) None of the above

6D. Koop, CSCI 503/490, Spring 2023

Question 5
• If mylist = [1,2,3,4,5,6], what is mylist[1:-2]?

(a) [1,2,3,4,5]
(b) [1,2,3,4]
(c) [2,3,4,5]
(d) [2,3,4]

7D. Koop, CSCI 503/490, Spring 2023

Sets & Operations
• s = {'DeKalb', 'Kane', 'Cook', 'Will'}
t = {'DeKalb', 'Winnebago', 'Will'}

• Union: s | t # {'DeKalb', 'Kane', 'Cook', 'Will', 'Winnebago'}
• Intersection: s & t # {'DeKalb', 'Will'}
• Difference: s - t # {'Kane', 'Cook'}
• Symmetric Difference: s ^ t # {'Kane', 'Cook', 'Winnebago'}
• Object method variants: s.union(t), s.intersection(t),
s.difference(t), s.symmetric_difference(t)

• *_update and augmented operator variants

8D. Koop, CSCI 503/490, Spring 2023

Comprehension
• Shortcut for loops that transform or filter collections
• Functional programming features this way of thinking:

Pass functions to functions!
• Imperative: a loop with the actual functionality buried inside
• Functional: specify both functionality and data as inputs

9D. Koop, CSCI 503/490, Spring 2023

List Comprehension
• output = []
for d in range(5):
 output.append(d ** 2 - 1)

• Rewrite as a map:
- output = [d ** 2 - 1 for d in range(5)]

• Can also filter:
- output = [d for d in range(5) if d % 2 == 1]

• Combine map & filter:
- output = [d ** 2 - 1 for d in range(5) if d % 2 == 1]

10D. Koop, CSCI 503/490, Spring 2023

Comprehensions for other collections
• Dictionaries

- {k: v for (k, v) in other_dict.items()
 if k.startswith('a')}

- Example: one-to-one map inverses
• {v: k for (k, v) in other_dict.items()}

• Be careful that the dictionary is actually one-to-one!
• Sets:

- {s[0] for s in names}

• Tuples? Not exactly
- (s[0] for s in names)

- Not a tuple, a generator expression

11D. Koop, CSCI 503/490, Spring 2023

Assignment 3
• Pokémon Data
• Looking at where and how people and goods move across land borders
• Start with the sample notebook (or copy its code) to download the data
• Data is a list of dictionaries
• Need to iterate through, update, and create new lists & dictionaries

12D. Koop, CSCI 503/490, Spring 2023

http://faculty.cs.niu.edu/~dakoop/cs503-2023sp/assignment3.html

Test 1
• Wednesday, Feb. 22, 11:00am-12:15pm
• In-Class, paper/pen & pencil
• Covers material through this week
• Format:
- Multiple Choice
- Free Response

• Information at the link above

13D. Koop, CSCI 503/490, Spring 2023

http://faculty.cs.niu.edu/~dakoop/cs503-2023sp/test1.html

Iterators
• Key concept: iterators only need to have a way to get the next element
• To be iterable, an object must be able to produce an iterator
- Technically, must implement the __iter__ method

• An iterator must have two things:
- a method to get the next item
- a way to signal no more elements

• In Python, an iterator is an object that must
- have a defined __next__ method
- raise StopException if no more elements available

14D. Koop, CSCI 503/490, Spring 2023

Iteration Methods
• You can call iteration methods directly, but rarely done

- my_list = [2,3,5,7,11]
it = iter(my_list)
first = next(it)
print("First element of list:", first)

• iter asks for the iterator from the object
• next asks for the next element
• Usually just handled by loops, comprehensions, or generators

15D. Koop, CSCI 503/490, Spring 2023

For Loop and Iteration
• my_list = [2,3,5,7,11]
for i in my_list:
 print(i * i)

• Behind the scenes, the for construct
- asks for an iterator it = iter(my_list)
- calls next(it) each time through the loop and assigns result to i
- handles the StopIteration exception by ending the loop

• Loop won't work if we don't have an iterable!
- for i in 7892:
 print(i * i)

16D. Koop, CSCI 503/490, Spring 2023

Generators
• Special functions that return lazy iterables
• Use less memory
• Change is that functions yield instead of return
• def square(it):
 for i in it:
 yield i*i

• If we are iterating through a generator, we hit the first yield and immediately
return that first computation

• Generator expressions just shorthand (remember no tuple comprehensions)
- (i * i for i in [1,2,3,4,5])

17D. Koop, CSCI 503/490, Spring 2023

Generators
• If memory is not an issue, a comprehension is probably faster
• …unless we don't use all the items
• def square(it):
 for i in it:
 yield i*i

• for j in square([1,2,3,4,5]):
 if j >= 9:
 break
 print(j)

• The square function only runs the computation for 1, 2, and 3
• What if this computation is slow?

18D. Koop, CSCI 503/490, Spring 2023

Lazy Evaluation
• u = compute_fast_function(s, t)
v = compute_slow_function(s, t)
if s > t and s**2 + t**2 > 100:
 return u / 100
else:
 return v / 100

• We don't write code like this! Why?

19D. Koop, CSCI 503/490, Spring 2023

Lazy Evaluation
• u = compute_fast_function(s, t)
v = compute_slow_function(s, t)
if s > t and s**2 + t**2 > 100:
 return u / 100
else:
 return v / 100

• We don't write code like this! Why?
• Don't compute values until you need to!

20D. Koop, CSCI 503/490, Spring 2023

Lazy Evaluation
• Rewriting
• if s > t and s**2 + t**2 > 100:
 u = compute_fast_function(s, t)
 res = u / 100
else:
 v = compute_slow_function(s, t)
 res = v / 100

• Slow function will not be executed unless the condition is true

21D. Koop, CSCI 503/490, Spring 2023

Lazy Evaluation
• What if this were rewritten as:
• def my_function(s, t, u, v):
 if s > t and s**2 + t**2 > 100:
 res = u
 else:
 res = v
 return res
my_function(s, t, compute_fast_function(s, t),
 compute_slow_function(s, t))

• In some languages (often pure functional languages), computation of u and v
may be deferred until we need them

• Python doesn't work that way in this case

22D. Koop, CSCI 503/490, Spring 2023

Short-Circuit Evaluation
• But Python, and many other languages, do work this way for boolean

operations
• if b != 0 and a/b > c:
 return ratio - c

• Never get a divide by zero error!
• Compare with:
• def check_ratio(val, ratio, cutoff):
 if val != 0 and ratio > cutoff:
 return ratio - cutoff
check_ratio(b, a/b, c)

• Here. a/b is computed before check_ratio is called (but not used!)

23D. Koop, CSCI 503/490, Spring 2023

Short-Circuit Evaluation
• Works from left to right according to order of operations (and before or)
• Works for and and or
• and:
- if any value is False, stop and return False
- a, b = 2, 3
a > 3 and b < 5

• or:
- if any value is True, stop and return True
- a, b, c = 2, 3, 7
a > 3 or b < 5 or c > 8

24D. Koop, CSCI 503/490, Spring 2023

Short-Circuit Evaluation
• Back to our example
• if s > t and compute_slow_function(s, t) > 50:
 c = compute_slow_function(s, t)
else:
 c = compute_fast_function(s, t)

• s, t = 10, 12 # compute_slow_function is never run

• s, t = 5, 4 # compute_slow_function is run once

• s, t = 12, 10 # compute_slow_function is run twice

25D. Koop, CSCI 503/490, Spring 2023

Short-Circuit Evaluation
• Walrus operator saves us one computation
• if s > t and (c := compute_slow_function(s, t) > 50):
 pass
else:
 c = s ** 2 + t ** 2

• s, t = 10, 12 # compute_slow_function is never run

• s, t = 5, 4 # compute_slow_function is run once

• s, t = 12, 10 # compute_slow_function is run once

26D. Koop, CSCI 503/490, Spring 2023

What about multiple executions?
• for s, t in [(12, 10), (4, 5), (5, 4), (12, 10)]:
 if s > t and (c := compute_slow_function(s, t) > 50):
 pass
 else:
 c = compute_fast_function(s, t)

• What's the problem here?

27D. Koop, CSCI 503/490, Spring 2023

What about multiple executions?
• for s, t in [(12, 10), (4, 5), (5, 4), (12, 10)]:
 if s > t and (c := compute_slow_function(s, t) > 50):
 pass
 else:
 c = compute_fast_function(s, t)

• What's the problem here?
• Executing the function for the same inputs twice!

28D. Koop, CSCI 503/490, Spring 2023

Memoization
• memo_dict = {}
def memoized_slow_function(s, t):
 if (s, t) not in memo_dict:
 memo_dict[(s, t)] = compute_slow_function(s, t)
 return memo_dict[(s, t)]

• for s, t in [(12, 10), (4, 5), (5, 4), (12, 10)]:
 if s > t and (c := memoized_slow_function(s, t) > 50):
 pass
 else:
 c = compute_fast_function(s, t)

• Second time executing for s=12, t=10, we don't need to compute!
• Tradeoff memory for compute time

29D. Koop, CSCI 503/490, Spring 2023

Memoization
• Heavily used in functional languages because there is no assignment
• Cache (store) the results of a function call so that if called again, returns the

result without having to compute
• If arguments of a function are hashable, fairly straightforward to do this for

any Python function by caching in a dictionary
• In what contexts, might this be a bad idea?

30D. Koop, CSCI 503/490, Spring 2023

Memoization
• Heavily used in functional languages because there is no assignment
• Cache (store) the results of a function call so that if called again, returns the

result without having to compute
• If arguments of a function are hashable, fairly straightforward to do this for

any Python function by caching in a dictionary
• In what contexts, might this be a bad idea?

- def memoize_random_int(a, b):
 if (a,b) not in random_cache:
 random_cache[(a,b)] = random.randint(a,b)
 return random_cache[(a,b)]

- When we want to rerun, e.g. random number generators

31D. Koop, CSCI 503/490, Spring 2023

Functional Programming
• Programming without imperative statements like assignment
• In addition to comprehensions & iterators, have functions:
- map: iterable of n values to an iterable of n transformed values
- filter: iterable of n values to an iterable of m (m <= n) values

• Eliminates need for concrete looping constructs

32D. Koop, CSCI 503/490, Spring 2023

Map
• Generator function (lazy evaluation)
• First argument is a function, second argument is the iterable
• def upper(s):
 return s.upper()

• map(upper, ['sentence', 'fragment']) # generator

• Similar comprehension:
- [upper(s) for s in ['sentence', 'fragment']] # comprehension

• This only calls upper once
• for word in map(upper, ['sentence', 'fragment']):
 if word == "SENTENCE":
 break

33D. Koop, CSCI 503/490, Spring 2023

Filter
• Also a generator
• def is_even(x):
 return (x % 2) == 0

• filter(is_even, range(10)) # generator

• Similar comprehension:
- [d for d in range(10) if is_even(d)] # comprehension

34D. Koop, CSCI 503/490, Spring 2023

Lambda Functions
• def is_even(x):
 return (x % 2) == 0

• filter(is_even, range(10) # generator

• Lots of code to write a simple check
• Lambda functions allow inline function definition
• Usually used for "one-liners": a simple data transform/expression
• filter(lambda x: x % 2 == 0, range(10))

• Parameters follow lambda, no parentheses
• No return keyword as this is implicit in the syntax
• JavaScript has similar functionality (arrow functions): (d => d % 2 == 0)

35D. Koop, CSCI 503/490, Spring 2023

