Programming Principles in Python (CSCI 503/490)

| azy Evaluation

Dr. David Koop

(some slides adapted from Dr. Reva Freedman)

D. Koop, CSCI 503/490, Spring 2023 Northern Illinois University

D. Koop, CSCI 503/490, Spring 2023 Northern Illinois University 2

Question 1

e \/Vhich of the following is a valid comprehension®

@) [d * 2 if d % 2
b) (d * 2 for d in
) (d * 2 if d & 2
d) [d * 2 for d in

== for d in range (10)]
range (10) if d % 2 == 0)
__ for d in range (10))
range (10) 1f d % == 0]

D. Koop, CSCI 503/490, Spring 2023

Northern Illinois University 3

Question 2

p—

e (Given the function signature def

f(a, b=3, c=7), which of the following

expressions runs without an error?

(@) £ (a=5)

(b) £ (b=5,c=1)
() £()

d) £(3,4,9,2)

D. Koop, CSCI 503/490, Spring 2023

Northern Illinois University 4

Question 3

olfs = {'a','b','b','a','b'",'c'}whatis 1len(s)?

D. Koop, CSCI 503/490, Spring 2023 Northern Illinois University 5

Question 4

e \/Vhich of the following is not a valid operation on a sequence?
(@) iteration
(b) slicing
(c) membership
(d) None of the above

D. Koop, CSCI 503/490, Spring 2023 Northern Illinois University 6

Question 5

 [fmylist = [1,2,3,4,5,6],whatismylist[1:-2]"7

@ [1,2,3,4,5]
b) [1,2,3,4°
() [2,3,4,5
d) [2,3,4]

D. Koop, CSCI 503/490, Spring 2023 Northern Illinois University 7

Sets & Operations

e s = {'DeKalb', 'Kane', 'Cook', "Will'}
t = {'DeKalb', 'Winnebago', '"Will'}

e Union: s | t {'DeKalb', 'Kane', 'Cook', 'Will', 'Winnebago'}

e [Nntersection: s & t {'DeKalb', '"Will'}

e Difference: s - t {'Kane', 'Cook'}

e Symmetric Difference: s ~ t {'"Kane', 'Cook', 'Winnebago')}

e Object method variants: s.union(t), s.intersection(t),

—

s.difference(t), s.symmetric difference (t)

 * update and augmented operator variants

D. Koop, CSCI 503/490, Spring 2023 Northern Illinois University 8

Comprehension

e Shortcut for loops that transform or filter collections

e Functional programming features this way of thinking:
Pass functions to functions!

o Imperative: a loop with the actual functionality buried inside
e Functional: specity both functionality and data as inputs

D. Koop, CSCI 503/490, Spring 2023 Northern Illinois University 9

|ist Comprehension

e output = []
for d 1n range(5):
output.append(d ** 2 - 1)

® Rewrite as a map:
- output = [d ** 2 - 1 for d 1n range(5)]

e Can also filter:
- output = [d for d 1n range(d5) 1£f d % 2 == 1]

e Combine map & filter:
- output = [d ** 2 - 1 for d in range(b) 1f d $ 2 == 1]

D. Koop, CSCI 503/490, Spring 2023 Northern Illinois University 10

Comprehensions for other collections

e Dictionaries

- {k: v for (k, v) 1n other dict.items ()
1f k.startswith('a') }

- Example: one-to-one map Inverses

e {v: k for (k, v) 1n other dict.items() }

* Be careful that the dictionary Is actually one-to-one!
® Sets:

- {s[0] for s 1n names}

e Tuples” Not exactly

- (s[0] for s 1n names)

- Not a tuple, a generator expression

D. Koop, CSCI 503/490, Spring 2023 Northern Illinois University 11

Assignment 3

e Pokémon Data

® | oOking at where and how people and goods move across land borders
e Start with the sample notelbook (or copy its code) to download the data
e Data Is a list of dictionaries

e Need to Iterate through, update, and create new lists & dictionaries

D. Koop, CSCI 503/490, Spring 2023 Northern Illinois University 12

http://faculty.cs.niu.edu/~dakoop/cs503-2023sp/assignment3.html

lest 1

e \\Nednesday, Feb. 22, 11:00am-12:15pm
¢ In-Class, paper/pen & pencill
e Covers material through this week
e Format:
- Multiple Choice
- Free Response
¢ Information at the link above

D. Koop, CSCI 503/490, Spring 2023 Northern Illinois University 13

http://faculty.cs.niu.edu/~dakoop/cs503-2023sp/test1.html

iterators

o Key concept: iterators only need to have a way to get the next element
® [0 be Iterable, an object must be able to produce an iterator
- Technically, must implementthe iter methoo

® An iterator must have two things:
- a method to get the next item
- a way to signal no more elements
¢ |n Python, an iterator is an object that must
- have a defined next methoo
- ralsSe StopException If NO More elements available

D. Koop, CSCI 503/490, Spring 2023 Northern Illinois University 14

lteration Methods

e You can call iteration methods directly, but rarely done

-my list = [2,3,5,7,11]
1t = 1ter(my list)
first = next(1it)

print ("First element of list:", first)

e iter asks for the iterator from the object

e next asks for the next element
e Usually just handled by loops, comprenhensions, or generators

D. Koop, CSCI 503/490, Spring 2023 Northern Illinois University 15

~or Loop and lteration

enmy list = [2,3,5,7,11]
for 1 1n my list:
print (1 * 1)

e Behind the scenes, the for construct
- asks for an iterator it = iter (my list)

- calls next (it) each time through the loop and assigns result to |
- handles the stopIteration exception by ending the loop

e | oop won't work If we don't have an iterable!

- for 1 1n 7892:
print (i1 * 1)

D. Koop, CSCI 503/490, Spring 2023 Northern Illinois University 16

(Generators

e Special functions that return lazy iterables
¢ Use less memory
e Change is that functions yield instead of return

—

o def

square (1t) :
for 1 1n 1t:
vield 1*1

o [f we are Iterating through a generator, we hit the first yield and immediately
return that first computation

e (Generator expressions just shorthand (remember no tuple comprehensions)
- (i * 1 for 1 in [1,2,3,4,5])

D. Koop, CSCI 503/490, Spring 2023 Northern Illinois University 17

(Generators

* [f memory IS Not an Issue, a comprehension Is probably faster
e ..unless we don't use all the items

® def sgquare(it) :
for 1 1n 1t:
vield 1*1

e for 7 1n square([1,2,3,4,5]):

1f 7 >= 9:
break
print (7j)

® [he square function only runs the computation for 1, 2, and 3
e \\hat If this computation is slow??

D. Koop, CSCI 503/490, Spring 2023 Northern Illinois University 18

| azy Evaluation

e u = compute fast function(s, t)
v = compute slow function(s, t)
if s > t and s**2 + t**2 > 100:

return u / 100
else:
return v / 100

e \\Ve don't write code like this! Why?

D. Koop, CSCI 503/490, Spring 2023 Northern Illinois University 19

| azy Evaluation

u = compute fast function(s, t)
v = compute slow function(s, t)
if s > t and s**2 + t**2 > 100:
return u / 100
else:
return v / 100

e \\Ve don't write code like this! Why?
e Don't compute values until you need to!

D. Koop, CSCI 503/490, Spring 2023 Northern Illinois University 20

| azy Evaluation

* Rewriting
e 1f s > t and s**2 + t**2 > 100:
u = compute fast function(s, t)
res = u / 100
else:
v = compute slow function (s, t)

res = v / 100
e slow function will not be executed unless the condition Is true

D. Koop, CSCI 503/490, Spring 2023 Northern Illinois University 21

| azy Evaluation

e \Vhat If this were rewritten as:

—

e def my function(s, t, u, v):

1f s > t and s**2 + t**2 > 100:
res = u

else:
res = v

return res

my function(s, t, compute fast function(s, t),
compute slow function(s, t))

e |n some languages (often pure functional languages), computation of v and v
may be deferred until we need them

* Python doesn't work that way in this case

D. Koop, CSCI 503/490, Spring 2023 Northern Illinois University 22

Short-Circuit Evaluation

e But Python, and many other languages, do work this way for boolean
operations

e if b '= 0 and a/b > c:
return ratio - ¢

e Never get a divide by zero error!
e Compare with:

e def check ratio(val, ratio, cutoff):

—

1f val !'= 0 and ratio > cuto
return ratio - cutoff
check ratio(b, a/b, c)

® Here. a/b IS computed before check ratio Is called (out not used!)

D. Koop, CSCI 503/490, Spring 2023 Northern Illinois University 23

Short-Circuit Evaluation

o \Norks from left to right according to order of operations (and before or)
e \Works for and and or

® and:

- Ifany value Is False, Stop and return False
-a, b =2, 3
a > 3 and b < 5
® Or:

- If any value Is True, stop and return True

-a, b, ¢ =2, 3, 7
a > 3 or b < 5 o0or ¢ > 8

D. Koop, CSCI 503/490, Spring 2023 Northern Illinois University =~ 24

Short-Circuit Evaluation

e Back to our example

[—

e 1f s > t and compute slow function(s, t) > 50:

c = compute slow function (s, t)
else:
c = compute fast function(s, t)
e s, t =10, 12 compute slow functlon 1s never run
s, t =5, 4 compute slow functilion 1s run once
e s, t =12, 10 compute slow function 1s run twice

D. Koop, CSCI 503/490, Spring 2023 Northern Illinois University 25

Short-Circuit Evaluation

e \Nalrus operator saves us one computation

e 1f s > t and (¢ := compute slow function(s, t) > 50):
pass
else:
C = 8 ** 2 L ** 2
e s, t =10, 12 compute slow function 1s never run
e s, t = 5, 4 compute slow function 1s run once
e s, t =12, 10 compute slow functilon 1s run once

D. Koop, CSCI 503/490, Spring 2023 Northern Illinois University 26

What about multiple executions?

e for s, t in [(12, 10), (4, 5), (5, 4), (12, 10)]:
1f s > t and (¢ := compute slow function(s, t) > 50):
pass
else:

c = compute fast function(s, t)

e \What's the problem here”

D. Koop, CSCI 503/490, Spring 2023 Northern Illinois University 27

What about multiple executions?

e for s, t in [(12, 10),
1f s > t and (c :=
Pass
else:

C = compute T

(4, 2), (5, 4), (12, 10)]:
compute slow function (s, t) > 50):

ast function(s, t)
e \What's the problem here”
e Executing the function for the same inputs twice!

D. Koop, CSCI 503/490, Spring 2023 Northern Illinois University ~ 28

Viemolization

e memo dict = {}
def memolzed slow function(s, t):
1f (s, t) not 1n memo dict:

memo dict[(s, t)] = compute slow function(s, t)

return memo dict([(s, t)]

e for s, t in [(12, 10), (4, 5), (5, 4), (12, 10)]:
1f s > t and (¢ := memoized slow function(s, t) > 50):
Pass
else:

c = compute fast function (s, t)

B

e Second time executing for s=12, t=10, we don't need to compute!
¢ [radeoff memory for compute time

D. Koop, CSCI 503/490, Spring 2023 Northern Illinois University 29

Viemolization

e Heavily used In functional languages because there Is N0 assignment

e Cache (store) the results of a function call so that if called again, returns the
result without having to compute

o [f arguments of a function are hashable, fairly straightforward to do this for
any Python function by caching in a dictionary

* |n what contexts, might this be a bad idea”

D. Koop, CSCI 503/490, Spring 2023 Northern Illinois University 30

Viemolization

e Heavily used In functional languages because there Is N0 assignment

e Cache (store) the results of a function call so that if called again, returns the
result without having to compute

o [f arguments of a function are hashable, fairly straightforward to do this for
any Python function by caching in a dictionary

* |n what contexts, might this be a bad idea”

- def memoize random 1nt (a, b):
1f (a,b) not 1n random cache:
random cachel (a,b)] = random.randint (a,b)

return random cache| (a,b)]

- When we want to rerun, e.g. random number generators

D. Koop, CSCI 503/490, Spring 2023 Northern Illinois University 31

~unctional Programming

e Programming without imperative statements like assignment

¢ |n addition to comprehensions & iterators, have functions:
- map: iterable of n values to an iterable of n transformed values
- filter: iterable of n values to an iterable of m (m <= n) values

e Eliminates need for concrete looping constructs

D. Koop, CSCI 503/490, Spring 2023 Northern Illinois University ~ 32

Viap

e (Generator function (lazy evaluation)

e -irst argument is a function, second argument is the iterable

—

e def upper(s):
return s.upper ()

e map (upper, ['sentence', 'fragment'])

e Similar comprehension:

- [upper(s) for s 1n ['sentence',

e [his only calls upper once

—

1f word == "SENTENCE":
break

I

e for word 1n map (upper, ['sentence',

generator

fragment']] comprehension

fragment']) :

D. Koop, CSCI 503/490, Spring 2023

Northern Illinois University 33

Fllter

® Also a generator

—

e def 1s even (x):
return (x % 2) == 0

e fi1lter(1s even, range(1l0)) generator

e Similar comprehension:

- [d for d 1n range(10) 1f 1s even(d)] comprehension

D. Koop, CSCI 503/490, Spring 2023 Northern Illinois University 34

| ambda Functions

—

e def 1s even(x):
return (X % 2) ==

e filter(1s even, range (10) generator

¢ | ots of code to write a simple check

e | ambda functions allow inline function definition

e Usually used for "one-liners": a simple data transform/expression

O

e filter(lambda x: x 5 2 == 0, range(10))

e Parameters follow lambda, ho parentheses
e NO return Keyword as this is implicit in the syntax
e Javascript has similar functionality (arrow functions): (d => d % 2 == 0)

D. Koop, CSCI 503/490, Spring 2023 Northern Illinois University =~ 35

