
Programming Principles in Python (CSCI 503/490)

Sequences

Dr. David Koop

(some slides adapted from Dr. Reva Freedman)

D. Koop, CSCI 503/490, Spring 2023

2

Quiz

D. Koop, CSCI 503/490, Spring 2023

Quiz
1. Which is not a valid python identifier?

(a) float
(b) True
(c) mañana
(d) inOrderList

3D. Koop, CSCI 503/490, Spring 2023

Quiz
2. Which expression computes whether a is less than 2 and b is not equal to

10000?
(a) a < 2 and b != 10000
(b) !(a >= 2 || b == 10000)
(c) a < 2 and b is not 10000
(d) a < 2 && b != 10000

4D. Koop, CSCI 503/490, Spring 2023

Quiz
3. What type of statement did Dijkstra “consider harmful”?

(a) goto
(b) continue
(c) elif
(d) break

5D. Koop, CSCI 503/490, Spring 2023

Quiz
4. Which is an invalid string?

(a) '''She said, "Go home"'''
(b) "She said, "Go home""
(c) 'She said, \"Go home\"'
(d) 'She said, "Go home"'

6D. Koop, CSCI 503/490, Spring 2023

Quiz
5. What does 9 // 2 * 2 evaluate to?

(a) 9.
(b) 9
(c) 2
(d) 8

7D. Koop, CSCI 503/490, Spring 2023

if, else, elif, pass
• if a < 10:
 print("Small")
else:
 if a < 100:
 print("Medium")
 else:
 if a < 1000:
 print("Large")
 else:
 print("X-Large")

• if a < 10:
 print("Small")
elif a < 100:
 print("Medium")
elif a < 1000:
 print("Large")
else:
 print("X-Large")

8D. Koop, CSCI 503/490, Spring 2023

• Indentation is critical so else-if branches can become unwieldy (elif helps)
• Remember colons and indentation
• pass can be used for an empty block

while, break, continue
• while <boolean expression>:
 <loop-block>

• Condition is checked at the beginning and before each repeat
• break: immediately exit the current loop
• continue: stop loop execution and go back to the top of the loop, checking

the condition again
• while d > 0:
 a = get_next_input()
 if a > 100:
 break
 if a < 10:
 continue
 d -= a

9D. Koop, CSCI 503/490, Spring 2023

Edgar Dijkstra: Go To Statement Considered Harmful

1

Edgar Dijkstra: Go To Statement Considered Harmful

The Go To Statement Debate

10

[Dijkstra, 1968]
D. Koop, CSCI 503/490, Spring 2023

"…I became convinced that the go to statement should be abolished from all
'higher level' programming languages… The go to statement as it stands is
just too primitive; it is too much an invitation to make a mess of one's
program."

Loop Styles
• Loop-and-a-Half
d = get_data() # priming rd
while check(d):
 # do stuff
 d = get_data()

• Infinite-Loop-Break
while True:
 d = get_data()
 if check(d):
 break
 # do stuff

• Assignment Expression (Walrus)
while check(d := get_data):
 # do stuff

11D. Koop, CSCI 503/490, Spring 2023

For Loop
• for loops in Python are really for-each loops
• Always an element that is the current element
- Can be used to iterate through iterables (containers, generators, strings)
- Can be used for counting

• for i in range(5):
 print(i) # 0 1 2 3 4

• range(5) generates the numbers 0,1,2,3,4

12D. Koop, CSCI 503/490, Spring 2023

Range
• Python has lists which allow enumeration of all possibilities: [0,1,2,3,4]
• Can use these in for loops
• for i in [0,1,2,3,4]:
 print(i) # 0 1 2 3 4

• but this is less efficient than range (which is a generator)
• for i in range(5):
 print(i) # 0 1 2 3 4

• List must be stored, range doesn't require storage
• Printing a range doesn't work as expected:

- print(range(5)) # prints "range(0, 5)"

- print(list(range(5)) # prints "[0, 1, 2, 3, 4]"

13D. Koop, CSCI 503/490, Spring 2023

Looping Errors
• # for loop - summing the numbers 1 to 10
n = 10
cur_sum = 0
for i in range(n):
 cur_sum += i

print("The sum of the numbers from 1 to", n, "is ", cur_sum)

14D. Koop, CSCI 503/490, Spring 2023

Assignment 2
• Due next Thursday
• Python control flow and functions
• Do not use containers like lists!
• Compute sequences related to Collatz Conjecture
• Make sure to follow instructions
- Name the submitted file a2.ipynb
- Put your name and z-id in the first cell
- Label each part of the assignment using markdown
- Make sure to produce output according to specifications

15D. Koop, CSCI 503/490, Spring 2023

http://faculty.cs.niu.edu/~dakoop/cs503-2023sp/assignment2.html

16

Functions

D. Koop, CSCI 503/490, Spring 2023

Functions
• Call a function f: f(3) or f(3,4) or … depending on number of parameters
• def <function-name>(<parameter-names>):
 """Optional docstring documenting the function"""
 <function-body>

• def stands for function definition
• docstring is convention used for documentation
• Remember the colon and indentation
• Parameter list can be empty: def f(): …

17D. Koop, CSCI 503/490, Spring 2023

Functions
• Use return to return a value
• def <function-name>(<parameter-names>):
 # do stuff
 return res

• Can return more than one value using commas
• def <function-name>(<parameter-names>):
 # do stuff
 return res1, res2

• Use simultaneous assignment when calling:
- a, b = do_something(1,2,5)

• If there is no return value, the function returns None (a special value)

18D. Koop, CSCI 503/490, Spring 2023

Default Values & Keyword Arguments
• Can add =<value> to parameters
• def rectangle_area(width=30, height=20):
 return width * height

• All of these work:
- rectangle_area() # 600

- rectangle_area(10) # 200

- rectangle_area(10,50) # 500
• If the user does not pass an argument for that parameter, the parameter is

set to the default value
• Can also pass parameters using <name>=<value> (keyword arguments):

- rectangle_area(height=50) # 1500

19D. Koop, CSCI 503/490, Spring 2023

Return
• As many return statements as you want
• Always end the function and go back to the calling code
• Returns do not need to match one type/structure (generally not a good idea)
• def f(a,b):
 if a < 0:
 return -1
 while b > 10:
 b -= a
 if b < 0:
 return "BAD"
 return b

20D. Koop, CSCI 503/490, Spring 2023

Sequences
• Strings are sequences of characters: "abcde"
• Lists are also sequences: [1, 2, 3, 4, 5]
• + Tuples: (1, 2, 3, 4, 5)

21D. Koop, CSCI 503/490, Spring 2023

Lists
• Defining a list: my_list = [0, 1, 2, 3, 4]
• But lists can store different types:

- my_list = [0, "a", 1.34]
• Including other lists:

- my_list = [0, "a", 1.34, [1, 2, 3]]

22D. Koop, CSCI 503/490, Spring 2023

Lists Tuples
• Defining a tuple: my_tuple = (0, 1, 2, 3, 4)
• But tuples can store different types:

- my_tuple = (0, "a", 1.34)

• Including other tuples:
- my_tuple = (0, "a", 1.34, (1, 2, 3))

• How do you define a tuple with one element?

23D. Koop, CSCI 503/490, Spring 2023

Lists Tuples
• Defining a tuple: my_tuple = (0, 1, 2, 3, 4)
• But tuples can store different types:

- my_tuple = (0, "a", 1.34)

• Including other tuples:
- my_tuple = (0, "a", 1.34, (1, 2, 3))

• How do you define a tuple with one element?
- my_tuple = (1) # doesn't work

- my_tuple = (1,) # add trailing comma

24D. Koop, CSCI 503/490, Spring 2023

List Operations
• Not like vectors or matrices!
• Concatenate: [1, 2] + [3, 4] # [1,2,3,4]
• Repeat: [1,2] * 3 # [1,2,1,2,1,2]
• Length: my_list = [1,2]; len(my_list) # 2

25D. Koop, CSCI 503/490, Spring 2023

List Sequence Operations
• Concatenate: [1, 2] + [3, 4] # [1,2,3,4]
• Repeat: [1,2] * 3 # [1,2,1,2,1,2]
• Length: my_list = [1,2]; len(my_list) # 2

• Concatenate: (1, 2) + (3, 4) # (1,2,3,4)
• Repeat: (1,2) * 3 # (1,2,1,2,1,2)
• Length: my_tuple = (1,2); len(my_tuple) # 2

• Concatenate: "ab" + "cd" # "abcd"
• Repeat: "ab" * 3 # "ababab"
• Length: my_str = "ab"; len(my_str) # 2

26D. Koop, CSCI 503/490, Spring 2023

Sequence Indexing
• Square brackets are used to pull out an element of a sequence
• We always start counting at zero!
• my_str = "abcde"; my_str[0] # "a"

• my_list = [1,2,3,4,5]; my_list[2] # 3

• my_tuple = (1,2,3,4,5); my_tuple[5] # IndexError

27D. Koop, CSCI 503/490, Spring 2023

a b c d e

0 1 2 3 4

Negative Indexing
• Subtract from the end of the sequence to the beginning
• We always start counting at zero -1 (zero would be ambiguous!)
• my_str = "abcde"; my_str[-1] # "e"

• my_list = [1,2,3,4,5]; my_list[-3] # 3

• my_tuple = (1,2,3,4,5); my_tuple[-5] # 1

28D. Koop, CSCI 503/490, Spring 2023

a b c d e

0 1 2 3 4

-5 -4 -3 -2 -1

Slicing
• Want a subsequence of the given sequence
• Specify the start and the first index not included
• Returns the same type of sequence
• my_str = "abcde"; my_str[1:3] # "bc"

• my_list = [1,2,3,4,5]; my_list[3:4] # [4]

• my_tuple = (1,2,3,4,5); my_tuple[2:99] # (3,4,5)

29D. Koop, CSCI 503/490, Spring 2023

a b c d e

0 1 2 3 4

[1:3]

Negative Indices with Slices
• Negative indices can be used instead or with non-negative indices
• my_str = "abcde"; my_str[-4:-2] # "bc"

• my_list = [1,2,3,4,5]; my_list[3:-1] # [4]

• How do we include the last element?
• my_tuple = (1,2,3,4,5); my_tuple[-2:?]

30D. Koop, CSCI 503/490, Spring 2023

[-4:-2] a b c d e

0 1 2 3 4

-5 -4 -3 -2 -1

Negative Indices with Slices
• Negative indices can be used instead or with non-negative indices
• my_str = "abcde"; my_str[-4:-2] # "bc"

• my_list = [1,2,3,4,5]; my_list[3:-1] # [4]

• How do we include the last element?
• my_tuple = (1,2,3,4,5); my_tuple[-2:?]

30D. Koop, CSCI 503/490, Spring 2023

[-4:-2] a b c d e

0 1 2 3 4

-5 -4 -3 -2 -1

Implicit Indices
• Don't need to write indices for the beginning or end of a sequence
• Omitting the first number of a slice means start from the beginning
• Omitting the last number of a slice means go through the end
• my_tuple = (1,2,3,4,5); my_tuple[-2:len(my_tuple)]

• my_tuple = (1,2,3,4,5); my_tuple[-2:] # (4,5)

• Can create a copy of a sequence by omitting both
• my_list = [1,2,3,4,5]; my_list[:] # [1,2,3,4,5]

31D. Koop, CSCI 503/490, Spring 2023

Iteration
• for d in sequence:
 # do stuff

• Important: d is a data item, not an index!
• sequence = "abcdef"
for d in sequence:
 print(d, end=" ") # a b c d e f

• sequence = [1,2,3,4,5]
for d in sequence:
 print(d, end=" ") # 1 2 3 4 5

• sequence = (1,2,3,4,5)
for d in sequence:
 print(d, end=" ") # 1 2 3 4 5

32D. Koop, CSCI 503/490, Spring 2023

Membership
• <expr> in <seq>

• Returns True if the expression is in the sequence, False otherwise
• "a" in "abcde" # True

• 0 in [1,2,3,4,5] # False
• 3 in (3, 3, 3, 3) # True

33D. Koop, CSCI 503/490, Spring 2023

Sequence Operations

34D. Koop, CSCI 503/490, Spring 2023

Operator Meaning
<seq> + <seq> Concatenation

<seq> * <int-expr> Repetition
<seq>[<int-expr>] Indexing

len(<seq>) Length
<seq>[<int-expr?>:<int-expr?>] Slicing

for <var> in <seq>: Iteration
<expr> in <seq> Membership (Boolean)

Sequence Operations

34D. Koop, CSCI 503/490, Spring 2023

Operator Meaning
<seq> + <seq> Concatenation

<seq> * <int-expr> Repetition
<seq>[<int-expr>] Indexing

len(<seq>) Length
<seq>[<int-expr?>:<int-expr?>] Slicing

for <var> in <seq>: Iteration
<expr> in <seq> Membership (Boolean)

<int-expr?>: may be <int-expr> but also can be empty

What's the difference between the sequences?
• Strings can only store characters, lists & tuples can store arbitrary values
• Mutability: strings and tuples are immutable, lists are mutable
• my_list = [1, 2, 3, 4]
my_list[2] = 300
my_list # [1, 2, 300, 4]

• my_tuple = (1, 2, 3, 4); my_tuple[2] = 300 # TypeError

• my_str = "abcdef"; my_str[0] = "z" # TypeError

35D. Koop, CSCI 503/490, Spring 2023

List methods

36D. Koop, CSCI 503/490, Spring 2023

Method Meaning
<list>.append(d) Add element d to end of list.
<list>.extend(s) Add all elements in s to end of list.
<list>.insert(i, d) Insert d into list at index i.
<list>.pop(i) Deletes ith element of the list and returns its value.
<list>.sort() Sort the list.
<list>.reverse() Reverse the list.
<list>.remove(d) Deletes first occurrence of d in list.
<list>.index(d) Returns index of first occurrence of d.
<list>.count(d) Returns the number of occurrences of d in list.

List methods

36D. Koop, CSCI 503/490, Spring 2023

Method Meaning
<list>.append(d) Add element d to end of list.
<list>.extend(s) Add all elements in s to end of list.
<list>.insert(i, d) Insert d into list at index i.
<list>.pop(i) Deletes ith element of the list and returns its value.
<list>.sort() Sort the list.
<list>.reverse() Reverse the list.
<list>.remove(d) Deletes first occurrence of d in list.
<list>.index(d) Returns index of first occurrence of d.
<list>.count(d) Returns the number of occurrences of d in list.

Mutate

The del statement
• pop works well for removing an element by index plus it returns the element
• Can also remove an element at index i using

- del my_list[i]

• Note this is very different syntax so I prefer pop
• But del can delete slices

- del my_list[i:j]

• Also, can delete identifier names completely
- a = 32
del a
a # NameError

• This is different than a = None

37D. Koop, CSCI 503/490, Spring 2023

