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Quiz
1. Which is not a valid python identifier?  

(a) float 
(b) True  
(c) mañana 
(d) inOrderList
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Quiz
2. Which expression computes whether a is less than 2 and b is not equal to 

10000?  
(a) a < 2 and b != 10000 
(b) !(a >= 2 || b == 10000) 
(c) a < 2 and b is not 10000 
(d) a < 2 && b != 10000
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Quiz
3. What type of statement did Dijkstra “consider harmful”?  

(a) goto 
(b) continue  
(c) elif 
(d) break
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Quiz
4. Which is an invalid string?  

(a) '''She said, "Go home"''' 
(b) "She said, "Go home"" 
(c) 'She said, \"Go home\"' 
(d) 'She said, "Go home"'
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Quiz
5. What does 9 // 2 * 2 evaluate to?  

(a) 9. 
(b) 9  
(c) 2 
(d) 8
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if, else, elif, pass
• if a < 10: 
    print("Small") 
else: 
    if a < 100: 
        print("Medium") 
    else: 
        if a < 1000: 
            print("Large") 
        else: 
            print("X-Large") 

• if a < 10: 
    print("Small") 
elif a < 100: 
    print("Medium") 
elif a < 1000: 
    print("Large") 
else: 
    print("X-Large")
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• Indentation is critical so else-if branches can become unwieldy (elif helps) 
• Remember colons and indentation 
• pass can be used for an empty block



while, break, continue
• while <boolean expression>: 
    <loop-block> 

• Condition is checked at the beginning and before each repeat 
• break: immediately exit the current loop 
• continue: stop loop execution and go back to the top of the loop, checking 

the condition again 
• while d > 0: 
    a = get_next_input() 
    if a > 100: 
        break 
    if a < 10: 
        continue 
    d -= a
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Edgar Dijkstra: Go To Statement Considered Harmful 
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The Go To Statement Debate
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[Dijkstra, 1968]
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"…I became convinced that the go to statement should be abolished from all 
'higher level' programming languages… The go to statement as it stands is 
just too primitive; it is too much an invitation to make a mess of one's 
program."



Loop Styles
• Loop-and-a-Half 
d = get_data() # priming rd 
while check(d): 
    # do stuff 
    d = get_data() 

• Infinite-Loop-Break 
while True: 
    d = get_data() 
    if check(d): 
        break 
    # do stuff 

• Assignment Expression (Walrus) 
while check(d := get_data): 
    # do stuff
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For Loop
• for loops in Python are really for-each loops 
• Always an element that is the current element 
- Can be used to iterate through iterables (containers, generators, strings) 
- Can be used for counting 

• for i in range(5): 
    print(i) # 0 1 2 3 4 

• range(5) generates the numbers 0,1,2,3,4
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Range
• Python has lists which allow enumeration of all possibilities: [0,1,2,3,4] 
• Can use these in for loops 
• for i in [0,1,2,3,4]: 
    print(i) # 0 1 2 3 4 

• but this is less efficient than range (which is a generator) 
• for i in range(5): 
    print(i) # 0 1 2 3 4 

• List must be stored, range doesn't require storage 
• Printing a range doesn't work as expected: 

- print(range(5)) # prints "range(0, 5)" 

- print(list(range(5)) # prints "[0, 1, 2, 3, 4]"
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Looping Errors
• # for loop - summing the numbers 1 to 10 
n = 10 
cur_sum = 0 
for i in range(n): 
    cur_sum += i 
 
print("The sum of the numbers from 1 to", n, "is ", cur_sum)
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Assignment 2
• Due next Thursday 
• Python control flow and functions 
• Do not use containers like lists! 
• Compute sequences related to Collatz Conjecture 
• Make sure to follow instructions 
- Name the submitted file a2.ipynb 
- Put your name and z-id in the first cell 
- Label each part of the assignment using markdown 
- Make sure to produce output according to specifications
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http://faculty.cs.niu.edu/~dakoop/cs503-2023sp/assignment2.html
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Functions
• Call a function f: f(3) or f(3,4) or … depending on number of parameters 
• def <function-name>(<parameter-names>): 
    """Optional docstring documenting the function"""  
    <function-body> 

• def stands for function definition 
• docstring is convention used for documentation 
• Remember the colon and indentation 
• Parameter list can be empty: def f(): …
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Functions
• Use return to return a value 
• def <function-name>(<parameter-names>): 
    # do stuff 
    return res 

• Can return more than one value using commas 
• def <function-name>(<parameter-names>): 
    # do stuff 
    return res1, res2 

• Use simultaneous assignment when calling: 
- a, b = do_something(1,2,5) 

• If there is no return value, the function returns None (a special value)
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Default Values & Keyword Arguments
• Can add =<value> to parameters 
• def rectangle_area(width=30, height=20): 
    return width * height 

• All of these work: 
- rectangle_area() # 600 

- rectangle_area(10) # 200 

- rectangle_area(10,50) # 500 
• If the user does not pass an argument for that parameter, the parameter is 

set to the default value 
• Can also pass parameters using <name>=<value> (keyword arguments): 

- rectangle_area(height=50) # 1500
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Return
• As many return statements as you want 
• Always end the function and go back to the calling code 
• Returns do not need to match one type/structure (generally not a good idea) 
• def f(a,b): 
    if a < 0: 
        return -1 
    while b > 10: 
        b -= a 
        if b < 0: 
            return "BAD" 
    return b

20D. Koop, CSCI 503/490, Spring 2023



Sequences
• Strings are sequences of characters: "abcde" 
• Lists are also sequences: [1, 2, 3, 4, 5] 
• + Tuples: (1, 2, 3, 4, 5)
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Lists
• Defining a list: my_list = [0, 1, 2, 3, 4] 
• But lists can store different types: 

- my_list = [0, "a", 1.34] 
• Including other lists: 

- my_list = [0, "a", 1.34, [1, 2, 3]]
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Lists Tuples
• Defining a tuple: my_tuple = (0, 1, 2, 3, 4) 
• But tuples can store different types: 

- my_tuple = (0, "a", 1.34) 

• Including other tuples: 
- my_tuple = (0, "a", 1.34, (1, 2, 3)) 

• How do you define a tuple with one element?
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Lists Tuples
• Defining a tuple: my_tuple = (0, 1, 2, 3, 4) 
• But tuples can store different types: 

- my_tuple = (0, "a", 1.34) 

• Including other tuples: 
- my_tuple = (0, "a", 1.34, (1, 2, 3)) 

• How do you define a tuple with one element?  
- my_tuple = (1)  # doesn't work 

- my_tuple = (1,) # add trailing comma
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List Operations
• Not like vectors or matrices! 
• Concatenate: [1, 2] + [3, 4] # [1,2,3,4] 
• Repeat: [1,2] * 3 # [1,2,1,2,1,2] 
• Length: my_list = [1,2]; len(my_list) # 2
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List Sequence Operations
• Concatenate: [1, 2] + [3, 4] # [1,2,3,4] 
• Repeat: [1,2] * 3 # [1,2,1,2,1,2] 
• Length: my_list = [1,2]; len(my_list) # 2 

• Concatenate: (1, 2) + (3, 4) # (1,2,3,4) 
• Repeat: (1,2) * 3 # (1,2,1,2,1,2) 
• Length: my_tuple = (1,2); len(my_tuple) # 2 

• Concatenate: "ab" + "cd" # "abcd" 
• Repeat: "ab" * 3 # "ababab" 
• Length: my_str = "ab"; len(my_str) # 2
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Sequence Indexing
• Square brackets are used to pull out an element of a sequence 
• We always start counting at zero! 
• my_str = "abcde"; my_str[0] # "a" 

• my_list = [1,2,3,4,5]; my_list[2] # 3 

• my_tuple = (1,2,3,4,5); my_tuple[5] # IndexError
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Negative Indexing
• Subtract from the end of the sequence to the beginning 
• We always start counting at zero -1 (zero would be ambiguous!) 
• my_str = "abcde"; my_str[-1] # "e" 

• my_list = [1,2,3,4,5]; my_list[-3] # 3 

• my_tuple = (1,2,3,4,5); my_tuple[-5] # 1
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0 1 2 3 4
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Slicing
• Want a subsequence of the given sequence 
• Specify the start and the first index not included 
• Returns the same type of sequence 
• my_str = "abcde"; my_str[1:3] # "bc" 

• my_list = [1,2,3,4,5]; my_list[3:4] # [4] 

• my_tuple = (1,2,3,4,5); my_tuple[2:99] # (3,4,5)
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Negative Indices with Slices
• Negative indices can be used instead or with non-negative indices 
• my_str = "abcde"; my_str[-4:-2] # "bc" 

• my_list = [1,2,3,4,5]; my_list[3:-1] # [4] 

• How do we include the last element? 
• my_tuple = (1,2,3,4,5); my_tuple[-2:?]
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Negative Indices with Slices
• Negative indices can be used instead or with non-negative indices 
• my_str = "abcde"; my_str[-4:-2] # "bc" 

• my_list = [1,2,3,4,5]; my_list[3:-1] # [4] 

• How do we include the last element? 
• my_tuple = (1,2,3,4,5); my_tuple[-2:?]
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Implicit Indices
• Don't need to write indices for the beginning or end of a sequence 
• Omitting the first number of a slice means start from the beginning 
• Omitting the last number of a slice means go through the end 
• my_tuple = (1,2,3,4,5); my_tuple[-2:len(my_tuple)] 

• my_tuple = (1,2,3,4,5); my_tuple[-2:] # (4,5) 

• Can create a copy of a sequence by omitting both 
• my_list = [1,2,3,4,5]; my_list[:] # [1,2,3,4,5]
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Iteration
• for d in sequence: 
    # do stuff 

• Important: d is a data item, not an index! 
• sequence = "abcdef" 
for d in sequence: 
    print(d, end=" ")              # a b c d e f 

• sequence = [1,2,3,4,5] 
for d in sequence: 
    print(d, end=" ")              # 1 2 3 4 5 

• sequence = (1,2,3,4,5) 
for d in sequence: 
    print(d, end=" ")              # 1 2 3 4 5
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Membership
• <expr> in <seq> 

• Returns True if the expression is in the sequence, False otherwise 
• "a" in "abcde" # True 

• 0 in [1,2,3,4,5] # False 
• 3 in (3, 3, 3, 3) # True
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Sequence Operations
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Operator Meaning
<seq> + <seq> Concatenation

<seq> * <int-expr> Repetition
<seq>[<int-expr>] Indexing

len(<seq>) Length
<seq>[<int-expr?>:<int-expr?>] Slicing

for <var> in <seq>: Iteration
<expr> in <seq> Membership (Boolean)



Sequence Operations
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Operator Meaning
<seq> + <seq> Concatenation

<seq> * <int-expr> Repetition
<seq>[<int-expr>] Indexing

len(<seq>) Length
<seq>[<int-expr?>:<int-expr?>] Slicing

for <var> in <seq>: Iteration
<expr> in <seq> Membership (Boolean)

<int-expr?>: may be <int-expr> but also can be empty



What's the difference between the sequences?
• Strings can only store characters, lists & tuples can store arbitrary values 
• Mutability: strings and tuples are immutable, lists are mutable 
• my_list = [1, 2, 3, 4] 
my_list[2] = 300 
my_list # [1, 2, 300, 4] 

• my_tuple = (1, 2, 3, 4); my_tuple[2] = 300 # TypeError 

• my_str = "abcdef"; my_str[0] = "z" # TypeError
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List methods
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Method Meaning
<list>.append(d) Add element d to end of list.
<list>.extend(s) Add all elements in s to end of list.
<list>.insert(i, d) Insert d into list at index i.
<list>.pop(i) Deletes ith element of the list and returns its value.
<list>.sort() Sort the list.
<list>.reverse() Reverse the list.
<list>.remove(d) Deletes first occurrence of d in list.
<list>.index(d) Returns index of first occurrence of d.
<list>.count(d) Returns the number of occurrences of d in list.
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Method Meaning
<list>.append(d) Add element d to end of list.
<list>.extend(s) Add all elements in s to end of list.
<list>.insert(i, d) Insert d into list at index i.
<list>.pop(i) Deletes ith element of the list and returns its value.
<list>.sort() Sort the list.
<list>.reverse() Reverse the list.
<list>.remove(d) Deletes first occurrence of d in list.
<list>.index(d) Returns index of first occurrence of d.
<list>.count(d) Returns the number of occurrences of d in list.

Mutate



The del statement
• pop works well for removing an element by index plus it returns the element 
• Can also remove an element at index i using 

- del my_list[i] 

• Note this is very different syntax so I prefer pop 
• But del can delete slices 

- del my_list[i:j] 

• Also, can delete identifier names completely 
- a = 32 
del a 
a # NameError 

• This is different than a = None
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