Programming Principles in Python (CSCI 503/490)

Arrays

Dr. David Koop

D. Koop, CSCI 503/490, Spring 2022 Northern Illinois University

CPU-Bound vs. I/O-Bound

CPU
Processing

Compute Problem 1

Compute Problem 2

/10
Waiting

Request 1

CPU
Processing

Request 2

Request 3

Time

[J. Anderson]

D. Koop, CSCI 503/490, Spring 2022

Northern Illinois University p

https://realpython.com/python-concurrency

Threading

e Threading address the |/O walits by
letting separate pieces of a program
run at the same time

e [hreads run in the same process /0 | Feduest
Waiting : Request 2

* [hreads share the same memory . 1] Requwents

(and global variables) oy

: Thread 1 1 V

e Operating system schedules threads; WY Thread 2 ;)]

it can manage when each thread Thread 3 3

runs, €.g. round-robin scheduling Time >
e \WVhen blocking for |/O, other threads

can run

[J. Anderson]

D. Koop, CSCI 503/490, Spring 2022 Northern Illinois University 3

https://realpython.com/python-concurrency

Python Threading Speed

e |f |/O bound, threads work great because time spent waiting can now be
used by other threads

e [hreads do not run simultaneously in standard Python, i.e. they cannot take
advantage of multiple cores

e Use threads when code is I/0 bound, otherwise no real speed-up plus some
overhead for using threads

D. Koop, CSCI 503/490, Spring 2022 Northern Illinois University 4

Python and the GIL

e Solution for reference counting (used for garlbage collection)

e Could add locking to every value/data structure, but with multiple locks
comes possible deadlock

e Python instead has a Global Interpreter Lock (GIL) that must be acquired to
execute any Python code

e [his effectively makes Python single-threaded (faster execution)
e Python requires threads to give up GIL after certain amount of time

e Python 3 iImproved allocation of GIL to threads by not allowing a single CPU-
bound thread to hog it

D. Koop, CSCI 503/490, Spring 2022 Northern Illinois University 5

Multiprocessing

e Multiple processes do not need to share the same memory, interact less

e Python makes the difference between processes and threads minimal in
most cases

e Big win: can take advantage of multiple cores!

D. Koop, CSCI 503/490, Spring 2022 Northern Illinois University 6

Multiprocessing using concurrent.futures

e 1mport concurrent.futures
import multliprocessing as mp
1mport time

def dummy (num) :
time.sleep (D)
return num ** 2

with concurrent.futures.ProcessPoolkExecutor (max workers=)5,
mp context=mp.get context('fork')) as executor:

results = executor.map (dummy, range (10))

* mp.get context ('fork') changes from 'spawn' used by default in
MacOS, works in notebook

D. Koop, CSCI 503/490, Spring 2022 Northern Illinois University 7

aSyNCIO

e Single event loop that controls when each task is run
e [asks can be ready or waiting
e [asks are not interrupted like they are with threading
- lask controls when control goes back to the main event loop
- Elther waiting or complete
o Fvent loop keeps track of whether tasks are ready or waiting
- Re-checks to see if new tasks are now ready
- Picks the task that has been waiting the longest
* async and await Keywords

e Requires support from libraries (e.g. aiohttp)

[J. Anderson]
D. Koop, CSCI 503/490, Spring 2022 Northern Illinois University 8

https://realpython.com/python-concurrency

When to use threading, asyncio, or multiprocessing”?

e |f your code has a lot of [/O or Network usage:
- |t there Is library support, use asyncio
- Otherwise, multithreading iIs your best bet (lower overhead)
e |f you have a GUI
- Multithreading so your Ul thread doesn't get locked up
e |f your code is CPU bound:
- You should use multiprocessing (if your machine has multiple cores)

[J. Anderson]

D. Koop, CSCI 503/490, Spring 2022 Northern Illinois University 9

https://realpython.com/python-concurrency

Concurrency Comparison

Number of
Concurrency Type |Switching Decision Processors
Pre-emptive The operating system decides when 1
multitasking to switch tasks external to Python.
(threading)
Cooperative The tasks decide when to give up 1
multitasking control.
(@sync1o)
Multiprocessing The processes all run at the same Many
(multiprocessing) |time on different processors.

[J. Anderson]

D. Koop, CSCI 503/490, Spring 2022 Northern Illinois University 10

https://realpython.com/python-concurrency

Assignment 6

e Object-Oriented Programming & Exceptions
e Classes for an online market

e Use inheritance

e Due today

D. Koop, CSCI 503/490, Spring 2022 Northern Illinois University 11

http://faculty.cs.niu.edu/~dakoop/cs503-2022sp/assignment6.html

Assignment 7

® S00nN...
e Concurrency, Arrays

D. Koop, CSCI 503/490, Spring 2022 Northern Illinois University 12

Arrays

What is the difference between an array and a list (or a tuple)?

D. Koop, CSCI 503/490, Spring 2022 Northern Illinois University 13

Arrays

e Usually a fixed size—Ilists are meant to change size
e Are mutable —tuples are not
e Store only one type of data—lists and tuples can store any combination
e Are faster to access and manipulate than lists or tuples
e Can be multidimensional:
- Can have list of lists or tuple of tuples but no guarantee on shape
- Multidimensional arrays are rectangles, cubes, etc.

D. Koop, CSCI 503/490, Spring 2022 Northern Illinois University 14

Why NumPy*?

e Fast vectorized array operations for data munging and cleaning, subsetting
and filtering, transtformation, and any other kinds of computations

e Common array algorithms like sorting, unique, and set operations
o fficient descriptive statistics and aggregating/summarizing data

e Data alignment and relational data manipulations for merging and joining
together heterogeneous data sets

e EXpressing conditional logic as array expressions instead of loops with if-
elif-else branches

e (Group-wise data manipulations (aggregation, transformation, function
application).

[W. McKinney, Python for Data Analysis]

D. Koop, CSCI 503/490, Spring 2022 Northern Illinois University 15

1mport numpy as np

D. Koop, CSCI 503/490, Spring 2022 Northern Illinois University 16

Creating arrays
e datal = [o6, 7, 8, 0, 1]

arrl = np.array(datal)
e dataz = [[1.5,2,3,4],[5,0,7,8]]
arrZ2 = np.array(data?z)
e datal3 = np.array([ob, "abc", 3.57]) 't check 11

e Can check the type of an array in dtype property

® [ypes:
- arrl.dtype dtype ('1nto4d')

- arr3.dtype dtype ('<U21'"), unilcode plus chars

D. Koop, CSCI 503/490, Spring 2022 Northern Illinois University 17

lypes

o "But | thought Python wasn't stingy about types..."
® NUMPY aims for speed

e Able to do array arithmetic

e Nt106, INt32, Int64, float32, floato4, bool, object

e Can specify type explicitly
- arrl float = np.array(datal, dtype='tfloatod')

* astype Method allows you to convert between different types of arrays:

arr = np.array([1l, 2, 3, 4, 5])
arr.dtype
float arr = arr.astype(np.floato4d)

D. Koop, CSCI 503/490, Spring 2022 Northern Illinois University 18

nuMmpy data types (dtypes)

Type Type code Description

int8, uint8 11, ul Signed and unsigned 8-bit (1 byte) integer types

intl6, uintl6 12, u2 Signed and unsigned 16-bit integer types

int32, uint32 14, u4d Signed and unsigned 32-bit integer types

int64, uint64 18, u8 Signed and unsigned 64-bit integer types

floatil6 f2 Half-precision floating point

float32 f4 or f Standard single-precision floating point; compatible with C float

float64 f8 or d Standard double-precision floating point; compatible with C double and
Python float object

float128 f16 or g Extended-precision floating point

complex64, c8, cl6, Complex numbers represented by two 32, 64, or 128 floats, respectively

comp Lex128, c32

comp lex256

bool ! Boolean type storing True and Fa'lse values

object 0 Python object type; a value can be any Python object

string_ S Fixed-length ASCII string type (1 byte per character); for example, to create a

string dtype with length 10, use 'S10'

unicode_ U Fixed-length Unicode type (number of bytes platform specific); same
specification semantics as string_ (e.q., 'U10")

M.-MeKinney, Python for Data Analysis]

D. Koop, CSCI 503/490, Spring 2022 Northern Illinois University 19

Array Shape

e Our normal way of checking the size of a collection is... 1len

e How does this work for arrays?
e arrl = np.array([1,2,3,6,9])

len(arrl) 9
e arr2 = np.array([[1.5,2,3,41,15,6,7,81])
len (arr?) %

e All dimension lengths = shape: arr2.shape (2,4)

e Number of dimensions: arr2 .ndim 2

e Can also reshape an array:

- arr2Z2.reshape (4, 2)

- arrZ.reshape (-1, 2) what happens here?

D. Koop, CSCI 503/490, Spring 2022 Northern Illinois University 20

Speed Benefits

e Compare random number generation in pure Python versus numpy

* Python:
- 1mport random
stimelt rolls list = [random.randrange(l,7)
for 1 1n range (0, 60 000)]
o \With NumPy:
- stimeit rolls array = np.random.randint(l, 7, 60 000)

e Significant speedup (80x+)

D. Koop, CSCI 503/490, Spring 2022 Northern Illinois University 21

Array Programming

o | |sts:

- c = []

for 1 1n range(len(a)) :
c.append(afi1] + b[1])

e How to improve this?

D. Koop, CSCI 503/490, Spring 2022 Northern Illinois University 22

Array Programming

o | |sts:

- c = []

for 1 1n range(len(a)) :
c.append(afi1] + b[1])

- ¢ = [aa + bb for aa, bb 1n zip(a,b)]

e NumPy arrays:
-Cc =a + D

e \ore functional-style than imperative
¢ |[nternal iteration instead of external

D. Koop, CSCI 503/490, Spring 2022 Northern Illinois University 23

Operations

e a = np.arrav([1,2,3])
b = np.arrav([6,4,3])

e (Array, Array) Operations (Element-wise)

- Addition, Subtraction, Multiplication
- a + b arravy([7, 6, ©6])

e (Scalar, Array) Operations (Broadcasting):
- Addition, Subtraction, Multiplication, Division, Exponentiation
- a ** 2 array([1l, 4, 9])
- b + 3 array([9, 7, ©])

D. Koop, CSCI 503/490, Spring 2022 Northern Illinois University =~ 24

More on Array Creation

® /er0S: np.zeros (10)

e Ones: np.ones ((4,5)) shape
o EmMpty: np.empty ((2,2))

e |ike versions: pass an existing array and matches shape with specitied
contents

e Range: np.arange (15) constructs an array, not iterator!

D. Koop, CSCI 503/490, Spring 2022 Northern Illinois University 25

Indexing

e Same as with lists plus shorthand for 2D+
- arrl = np.array([o6, 7, &8, 0, 11)
- arrl|[1]

- arrl[-1]

e \\Vhat about two dimensions”?
- arr2 = np.array([[1.5,2,3,4],[5,06,7,8]1)
- arr[1][1]

-arr[1l,1] shorthand

D. Koop, CSCI 503/490, Spring 2022 Northern Illinois University 26

2D Indexing

axis 1
0 1 2

[W. McKinney, Python for Data Analysis]

D. Koop, CSCI 503/490, Spring 2022 Northern Illinois University 27

Slicing

e 1D: Similar to lists
- arrl = np.array([o6, 7, &8, 0, 11)

B

- arrl[2:5] np.arravy([8, 0, 1]), sort of

e Can mutate original array:

- arrl[2:5] = 3 supports assignment

- arrl] the original array changed

e Slicing returns views (copy the array if original array shouldn't change)
- arrl[2:5] a view

- arrl[2:5].copy () a new array

D. Koop, CSCI 503/490, Spring 2022 Northern Illinois University ~ 28

Slicing

o ?D+: comma separated indices as shorthand:
- arr2 = np.array([[1.5,2,3,4],[5,06,7,8]1)
-al[l:3,1:3]

-all:3,:] works like 1n single-dimensional lists

e Can combine index and slice in different dimensions

-all, :] glves a Irow

- al:, 1] glives a column

D. Koop, CSCI 503/490, Spring 2022 Northern Illinois University 29

2D Array Slicing

How to obtain the blue slice
from array arr”?

[W. McKinney, Python for Data Analysis]

D. Koop, CSCI 503/490, Spring 2022 Northern Illinois University 30

