
Programming Principles in Python (CSCI 503/490)

Arrays

Dr. David Koop

D. Koop, CSCI 503/490, Spring 2022

CPU-Bound vs. I/O-Bound

2

[J. Anderson]
D. Koop, CSCI 503/490, Spring 2022

https://realpython.com/python-concurrency

Threading
• Threading address the I/O waits by

letting separate pieces of a program
run at the same time

• Threads run in the same process
• Threads share the same memory

(and global variables)
• Operating system schedules threads;

it can manage when each thread
runs, e.g. round-robin scheduling

• When blocking for I/O, other threads
can run

3

[J. Anderson]
D. Koop, CSCI 503/490, Spring 2022

https://realpython.com/python-concurrency

Python Threading Speed
• If I/O bound, threads work great because time spent waiting can now be

used by other threads
• Threads do not run simultaneously in standard Python, i.e. they cannot take

advantage of multiple cores
• Use threads when code is I/O bound, otherwise no real speed-up plus some

overhead for using threads

4D. Koop, CSCI 503/490, Spring 2022

Python and the GIL
• Solution for reference counting (used for garbage collection)
• Could add locking to every value/data structure, but with multiple locks

comes possible deadlock
• Python instead has a Global Interpreter Lock (GIL) that must be acquired to

execute any Python code
• This effectively makes Python single-threaded (faster execution)
• Python requires threads to give up GIL after certain amount of time
• Python 3 improved allocation of GIL to threads by not allowing a single CPU-

bound thread to hog it

5D. Koop, CSCI 503/490, Spring 2022

Multiprocessing
• Multiple processes do not need to share the same memory, interact less
• Python makes the difference between processes and threads minimal in

most cases
• Big win: can take advantage of multiple cores!

6D. Koop, CSCI 503/490, Spring 2022

Multiprocessing using concurrent.futures
• import concurrent.futures
import multiprocessing as mp
import time

def dummy(num):
 time.sleep(5)
 return num ** 2

with concurrent.futures.ProcessPoolExecutor(max_workers=5,
 mp_context=mp.get_context('fork')) as executor:
 results = executor.map(dummy, range(10))

• mp.get_context('fork') changes from 'spawn' used by default in
MacOS, works in notebook

7D. Koop, CSCI 503/490, Spring 2022

asyncio
• Single event loop that controls when each task is run
• Tasks can be ready or waiting
• Tasks are not interrupted like they are with threading
- Task controls when control goes back to the main event loop
- Either waiting or complete

• Event loop keeps track of whether tasks are ready or waiting
- Re-checks to see if new tasks are now ready
- Picks the task that has been waiting the longest

• async and await keywords
• Requires support from libraries (e.g. aiohttp)

8

[J. Anderson]
D. Koop, CSCI 503/490, Spring 2022

https://realpython.com/python-concurrency

When to use threading, asyncio, or multiprocessing?
• If your code has a lot of I/O or Network usage:
- If there is library support, use asyncio
- Otherwise, multithreading is your best bet (lower overhead)

• If you have a GUI
- Multithreading so your UI thread doesn't get locked up

• If your code is CPU bound:
- You should use multiprocessing (if your machine has multiple cores)

9

[J. Anderson]
D. Koop, CSCI 503/490, Spring 2022

https://realpython.com/python-concurrency

Concurrency Comparison

10

[J. Anderson]
D. Koop, CSCI 503/490, Spring 2022

Concurrency Type Switching Decision
Number of

Processors
Pre-emptive
multitasking
(threading)

The operating system decides when
to switch tasks external to Python.

1

Cooperative
multitasking
(asyncio)

The tasks decide when to give up
control.

1

Multiprocessing
(multiprocessing)

The processes all run at the same
time on different processors.

Many

https://realpython.com/python-concurrency

Assignment 6
• Object-Oriented Programming & Exceptions
• Classes for an online market
• Use inheritance
• Due today

11D. Koop, CSCI 503/490, Spring 2022

http://faculty.cs.niu.edu/~dakoop/cs503-2022sp/assignment6.html

Assignment 7
• Soon…
• Concurrency, Arrays

12D. Koop, CSCI 503/490, Spring 2022

Arrays

What is the difference between an array and a list (or a tuple)?

13D. Koop, CSCI 503/490, Spring 2022

Arrays
• Usually a fixed size—lists are meant to change size
• Are mutable—tuples are not
• Store only one type of data—lists and tuples can store any combination
• Are faster to access and manipulate than lists or tuples
• Can be multidimensional:
- Can have list of lists or tuple of tuples but no guarantee on shape
- Multidimensional arrays are rectangles, cubes, etc.

14D. Koop, CSCI 503/490, Spring 2022

Why NumPy?
• Fast vectorized array operations for data munging and cleaning, subsetting

and filtering, transformation, and any other kinds of computations
• Common array algorithms like sorting, unique, and set operations
• Efficient descriptive statistics and aggregating/summarizing data
• Data alignment and relational data manipulations for merging and joining

together heterogeneous data sets
• Expressing conditional logic as array expressions instead of loops with if-
elif-else branches

• Group-wise data manipulations (aggregation, transformation, function
application).

15

[W. McKinney, Python for Data Analysis]
D. Koop, CSCI 503/490, Spring 2022

16

import numpy as np

D. Koop, CSCI 503/490, Spring 2022

Creating arrays
• data1 = [6, 7, 8, 0, 1]
arr1 = np.array(data1)

• data2 = [[1.5,2,3,4],[5,6,7,8]]
arr2 = np.array(data2)

• data3 = np.array([6, "abc", 3.57]) # !!! check !!!

• Can check the type of an array in dtype property
• Types:

- arr1.dtype # dtype('int64')

- arr3.dtype # dtype('<U21'), unicode plus # chars

17D. Koop, CSCI 503/490, Spring 2022

Types
• "But I thought Python wasn't stingy about types…"
• numpy aims for speed
• Able to do array arithmetic
• int16, int32, int64, float32, float64, bool, object
• Can specify type explicitly

- arr1_float = np.array(data1, dtype='float64')
• astype method allows you to convert between different types of arrays:

arr = np.array([1, 2, 3, 4, 5])
arr.dtype
float_arr = arr.astype(np.float64)

18D. Koop, CSCI 503/490, Spring 2022

In [36]: arr2.dtype
Out[36]: dtype('int32')

dtypes are a source of NumPy’s flexibility for interacting with data coming from other
systems. In most cases they provide a mapping directly onto an underlying disk or
memory representation, which makes it easy to read and write binary streams of data
to disk and also to connect to code written in a low-level language like C or Fortran.
The numerical dtypes are named the same way: a type name, like float or int, fol‐
lowed by a number indicating the number of bits per element. A standard double-
precision floating-point value (what’s used under the hood in Python’s float object)
takes up 8 bytes or 64 bits. Thus, this type is known in NumPy as float64. See
Table 4-2 for a full listing of NumPy’s supported data types.

Don’t worry about memorizing the NumPy dtypes, especially if
you’re a new user. It’s often only necessary to care about the general
kind of data you’re dealing with, whether floating point, complex,
integer, boolean, string, or general Python object. When you need
more control over how data are stored in memory and on disk,
especially large datasets, it is good to know that you have control
over the storage type.

Table 4-2. NumPy data types
Type Type code Description
int8, uint8 i1, u1 Signed and unsigned 8-bit (1 byte) integer types
int16, uint16 i2, u2 Signed and unsigned 16-bit integer types
int32, uint32 i4, u4 Signed and unsigned 32-bit integer types
int64, uint64 i8, u8 Signed and unsigned 64-bit integer types
float16 f2 Half-precision !oating point
float32 f4 or f Standard single-precision !oating point; compatible with C !oat
float64 f8 or d Standard double-precision !oating point; compatible with C double and

Python float object
float128 f16 or g Extended-precision !oating point
complex64,
complex128,
complex256

c8, c16,
c32

Complex numbers represented by two 32, 64, or 128 !oats, respectively

bool ? Boolean type storing True and False values
object O Python object type; a value can be any Python object
string_ S Fixed-length ASCII string type (1 byte per character); for example, to create a

string dtype with length 10, use 'S10'
unicode_ U Fixed-length Unicode type (number of bytes platform speci"c); same

speci"cation semantics as string_ (e.g., 'U10')

4.1 The NumPy ndarray: A Multidimensional Array Object | 91

numpy data types (dtypes)

19

[W. McKinney, Python for Data Analysis]
D. Koop, CSCI 503/490, Spring 2022

Array Shape
• Our normal way of checking the size of a collection is… len
• How does this work for arrays?
• arr1 = np.array([1,2,3,6,9])
len(arr1) # 5

• arr2 = np.array([[1.5,2,3,4],[5,6,7,8]])
len(arr2) # 2

• All dimension lengths → shape: arr2.shape # (2,4)
• Number of dimensions: arr2.ndim # 2
• Can also reshape an array:

- arr2.reshape(4,2)

- arr2.reshape(-1,2) # what happens here?

20D. Koop, CSCI 503/490, Spring 2022

Speed Benefits
• Compare random number generation in pure Python versus numpy
• Python:

- import random
%timeit rolls_list = [random.randrange(1,7)
 for i in range(0, 60_000)]

• With NumPy:
- %timeit rolls_array = np.random.randint(1, 7, 60_000)

• Significant speedup (80x+)

21D. Koop, CSCI 503/490, Spring 2022

Array Programming
• Lists:

- c = []
for i in range(len(a)):
 c.append(a[i] + b[i])

• How to improve this?

22D. Koop, CSCI 503/490, Spring 2022

Array Programming
• Lists:

- c = []
for i in range(len(a)):
 c.append(a[i] + b[i])

- c = [aa + bb for aa, bb in zip(a,b)]

• NumPy arrays:
- c = a + b

• More functional-style than imperative
• Internal iteration instead of external

23D. Koop, CSCI 503/490, Spring 2022

Operations
• a = np.array([1,2,3])
b = np.array([6,4,3])

• (Array, Array) Operations (Element-wise)
- Addition, Subtraction, Multiplication
- a + b # array([7, 6, 6])

• (Scalar, Array) Operations (Broadcasting):
- Addition, Subtraction, Multiplication, Division, Exponentiation
- a ** 2 # array([1, 4, 9])

- b + 3 # array([9, 7, 6])

24D. Koop, CSCI 503/490, Spring 2022

More on Array Creation
• Zeros: np.zeros(10)
• Ones: np.ones((4,5)) # shape
• Empty: np.empty((2,2))
• _like versions: pass an existing array and matches shape with specified

contents
• Range: np.arange(15) # constructs an array, not iterator!

25D. Koop, CSCI 503/490, Spring 2022

Indexing
• Same as with lists plus shorthand for 2D+

- arr1 = np.array([6, 7, 8, 0, 1])

- arr1[1]

- arr1[-1]

• What about two dimensions?
- arr2 = np.array([[1.5,2,3,4],[5,6,7,8]])

- arr[1][1]

- arr[1,1] # shorthand

26D. Koop, CSCI 503/490, Spring 2022

Figure 4-1. Indexing elements in a NumPy array

In multidimensional arrays, if you omit later indices, the returned object will be a
lower dimensional ndarray consisting of all the data along the higher dimensions. So
in the 2 × 2 × 3 array arr3d:

In [76]: arr3d = np.array([[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]])

In [77]: arr3d
Out[77]:
array([[[1, 2, 3],
 [4, 5, 6]],
 [[7, 8, 9],
 [10, 11, 12]]])

arr3d[0] is a 2 × 3 array:
In [78]: arr3d[0]
Out[78]:
array([[1, 2, 3],
 [4, 5, 6]])

Both scalar values and arrays can be assigned to arr3d[0]:
In [79]: old_values = arr3d[0].copy()

In [80]: arr3d[0] = 42

In [81]: arr3d
Out[81]:
array([[[42, 42, 42],
 [42, 42, 42]],
 [[7, 8, 9],
 [10, 11, 12]]])

In [82]: arr3d[0] = old_values

96 | Chapter 4: NumPy Basics: Arrays and Vectorized Computation

2D Indexing

27

[W. McKinney, Python for Data Analysis]
D. Koop, CSCI 503/490, Spring 2022

Slicing
• 1D: Similar to lists

- arr1 = np.array([6, 7, 8, 0, 1])

- arr1[2:5] # np.array([8, 0, 1]), sort of

• Can mutate original array:
- arr1[2:5] = 3 # supports assignment

- arr1 # the original array changed

• Slicing returns views (copy the array if original array shouldn't change)
- arr1[2:5] # a view

- arr1[2:5].copy() # a new array

28D. Koop, CSCI 503/490, Spring 2022

Slicing
• 2D+: comma separated indices as shorthand:

- arr2 = np.array([[1.5,2,3,4],[5,6,7,8]])

- a[1:3,1:3]

- a[1:3,:] # works like in single-dimensional lists

• Can combine index and slice in different dimensions
- a[1,:] # gives a row

- a[:,1] # gives a column

29D. Koop, CSCI 503/490, Spring 2022

2D Array Slicing

30

[W. McKinney, Python for Data Analysis]
D. Koop, CSCI 503/490, Spring 2022

How to obtain the blue slice
from array arr?

 [0.1913, 0.4544, 0.4519, 0.5535],
 [0.5994, 0.8174, -0.9297, -1.2564]])

)LJXUH������7ZR�GLPHQVLRQDO�DUUD\�VOLFLQJ

6XSSRVH�HDFK�QDPH�FRUUHVSRQGV�WR�D�URZ�LQ�WKH�data�DUUD\�DQG�ZH�ZDQWHG�WR�VHOHFW�DOO
WKH� URZV�ZLWK� FRUUHVSRQGLQJ�QDPH�'Bob'�� /LNH� DULWKPHWLF�RSHUDWLRQV�� FRPSDULVRQV
�VXFK�DV�==��ZLWK�DUUD\V�DUH�DOVR�YHFWRUL]HG��7KXV��FRPSDULQJ�names�ZLWK� WKH�VWULQJ
'Bob'�\LHOGV�D�ERROHDQ�DUUD\�

In [87]: names == 'Bob'
Out[87]: array([True, False, False, True, False, False, False], dtype=bool)

7KLV�ERROHDQ�DUUD\�FDQ�EH�SDVVHG�ZKHQ�LQGH[LQJ�WKH�DUUD\�

In [88]: data[names == 'Bob']
Out[88]:
array([[-0.048 , 0.5433, -0.2349, 1.2792],
 [2.1452, 0.8799, -0.0523, 0.0672]])

7KH�ERROHDQ�DUUD\�PXVW�EH�RI�WKH�VDPH�OHQJWK�DV�WKH�D[LV�LW¦V�LQGH[LQJ��<RX�FDQ�HYHQ
PL[�DQG�PDWFK�ERROHDQ�DUUD\V�ZLWK�VOLFHV�RU�LQWHJHUV��RU�VHTXHQFHV�RI�LQWHJHUV��PRUH
RQ�WKLV�ODWHU��

In [89]: data[names == 'Bob', 2:]
Out[89]:
array([[-0.2349, 1.2792],

86 | Chapter 4:ಗNumPy Basics: Arrays and Vectorized Computation

