Programming Principles in Python (CSCI 503/490)

OS Integration

Dr. David Koop

D. Koop, CSCI 503/490, Spring 2022 Northern Illinois University

Debugging

D. Koop, CSCI 503/490, Spring 2022 Northern Illinois University 2

Print Statements

e Just print the values or other information about identifiers:

—

e def my function(a, b):
print (a, Db)
print (b - a == 0)
return a b

e Note that we need to remember what is being printed

e Can add this to print call, or use f-strings with trailing = which causes the
name and value of the variable to be printed

—

e def my function(a, b):
print (£f"{a=} {b=} {b - a == 0}")
return a + Db

D. Koop, CSCI 503/490, Spring 2022 Northern Illinois University 3

. ogging Library

e Allows different levels of output (e.g. DEBUG, INFO, WARNING, ERROR
CRITICAL)

e Can output to a file as well as stdout/stderr

e Can configure to suppress certain levels or filter messages

e 1mport logglng
logger = logging.Logger ('my-logger')
logger.setlLevel (logging.DEBUG)
def my function(a,b):
logger.debug (f"{a=} {b=} {b-a == 0}")
return a + D
my function (3, 5)

D. Koop, CSCI 503/490, Spring 2022 Northern Illinois University 4

Python Debugger (pdb)

e Debuggers offer the ability to inspect and interact with code as it is running
- Post-mortem inspection (¥debug, python -m pdb)

- Breakpoints (just call breakpoint ())

e ndb is standard Python, also an ipdb variant for IPython/notebooks
- p [print expressions|: Print expressions, comma separated

- n [Step over]: continue until next line in current function
- s |step Into]: stop at next line of code (same function or one being called)
- ¢ [continuel: continue execution until next breakpoint

D. Koop, CSCI 503/490, Spring 2022 Northern Illinois University 5

JupyterLab Debugger

—

File Edit View Run

.

Kernel Tabs Settings Help

» addition.ipynb

3
B+ X0 O
o [1: 1 def
ES
1 res
Qo i res
> Tres
™ 1

0 1 {8 xpython | Idle

X
» ®m C » Code v
add(a, b):

res =a+b
return res

= add(1, 2)
+= 1

Saving completed

xpython O % @D

F N

ADDITION.IPYNB
VARIABLES

CALLSTACK

BREAKPOINTS ¢

SOURCE §

Mode: Command

@

Ln1, Col 14 _addiion.pynb [Jupyterl ab Docs]

D. Koop, CSCI 503/490, Spring 2022

Northern Illinois University 6

https://jupyterlab.readthedocs.io/en/stable/user/debugger.html

JupyterLab Debugger

—

File Edit View Run

.

Kernel Tabs Settings Help

» addition.ipynb

3
B+ X0 O
o [1: 1 def
ES
1 res
Qo i res
> Tres
™ 1

0 1 {8 xpython | Idle

X
» ®m C » Code v
add(a, b):

res =a+b
return res

= add(1, 2)
+= 1

Saving completed

xpython O % @D

F N

ADDITION.IPYNB
VARIABLES

CALLSTACK

BREAKPOINTS ¢

SOURCE §

Mode: Command

@

Ln1, Col 14 _addiion.pynb [Jupyterl ab Docs]

D. Koop, CSCI 503/490, Spring 2022

Northern Illinois University 6

https://jupyterlab.readthedocs.io/en/stable/user/debugger.html

lesting

D. Koop, CSCI 503/490, Spring 2022 Northern Illinois University 7

Testing via Print/If Statements

e Can make sure that types or values satisfy expectations

e 1f not 1sinstance(a, str):
ralse Exception("a 1s not a string")

—

o 1f 3 < a <= T7:
ralse Exception("a should not be 1n (3,7]")

® [hese may not be something we need to always check during runtime

D. Koop, CSCI 503/490, Spring 2022 Northern Illinois University 8

Assertions

e Shortcut for the manual if statements
e Have python throw an exception If a particular condition is not met
* assert IS a keyword, part of a statement, not a function

e assert a == 1, "a 1s not 1"

e Raises AssertionError If the condition IS Not met, otherwise continues

e Can be caught in an except clause or made to crash the code
e Problem: first fallure ends error checks

D. Koop, CSCI 503/490, Spring 2022 Northern Illinois University 9

unittest

e Subclass from unittest.TestCase, Write test * functions
e Use assert* Instance functions

e IMport unittest

class TestOperators (unittest.TestCase) :
def test add(self):
self.assertEqual (add (3, 4), 7)

def test add op(self):
self.assertEqual (operator.add(3,4), 7)
unittest.main(argv=["'"'], exit=False)

D. Koop, CSCI 503/490, Spring 2022 Northern Illinois University 10

| ots of Assertions

=
—]

® agssert!

=
-]

qual/assertNot!

qua

1: smart about lists/tuples/etc.

® assertless/assertGreater/assertlessEqual/assertGreaterEqual

® gssertAlmost.

mqual: allows for floating-point arithmetic errors

® assertTrue/assertFalse: check boolean assertions

® assert.

® assert.

® assertl

S

‘n: check containment

Instance

"sNone: check for None values

* assertRegex: check that a regex matches

* assertRaises: check that a particular exception Is raised

D. Koop, CSCI 503/490, Spring 2022

l%l Northern Illinois University 11

Test Options

e Run only certain tests

- argv=["'"] run default set of tests
- argv=["'"', 'TestLists'] run all test* methods 1n TestlLists
- argv=['"', 'TestAdd.test add'] run test add i1n TestAdd

e Show more detailed output

- By default, one character per test plus listing at end
o F.

e . Indicates success, F Indicates falled, & indicates error
- verbosity=2

e test add (main .TestAdd) ... FAIL
test add op (main .TestAdd) ... ok

D. Koop, CSCI 503/490, Spring 2022 Northern Illinois University 12

Startup and Cleanup for Tests

* setUp: INStantiate particular objects, read data, etc.
e tecarDown: get rid of unnecessary objects

e Example: set up a GUI widget that will be tested

- def setUp(self):
self.widget = Widget (some params)
det tearDown (self) :
self.widget.dispose ()

e Also functions for setting up classes and modules

[Python Documentation]
D. Koop, CSCI 503/490, Spring 2022 Northern Illinois University 13

https://docs.python.org/3/library/unittest.html#organizing-tests

Mock lesting

e Sometimes we don't want to actually execute all of the code that may be
triggered by a particular test

o Examples: code that posts to Iwitter, code that deletes files
e \\Ne can mock this behavior by substituting the actual methods with mockers

e Can even simulate side effects like having the function being mocked raise an
exception signifying the network is done

D. Koop, CSCI 503/490, Spring 2022 Northern Illinois University 14

Mock Examples

e Can check whether/how many times the mocked function was called

e from unittest.mock 1mport MagicMock
thing = ProductionClass ()
thing.method = MagilicMock (return value=3)
thing.method (3, 4, 5, key='value')
thing.method.assert called with (3, 4, 5, key='value')

e from unittest.mock 1mport patch
with patch.object (ProductionClass, 'method',
return value=None) as mock method:
thing = ProductionClass ()
thing.method (1, 2, 3)
mock method.assert called once with (1, 2, 3)

[Python Documentation]

D. Koop, CSCI 503/490, Spring 2022 Northern Illinois University 15

https://docs.python.org/3/library/unittest.mock.html

lest 2

e \\Nednesday, April 6

e Covers material from the beginning of course, emphasizing material since
lest 1

e Similar Format to Test 1

D. Koop, CSCI 503/490, Spring 2022 Northern Illinois University 16

Integration with the Operating System

® For now, focus on the filesystem
- Listing & Iraversing Directories
- Creating Directories
- Matching Files
- Copying, Moving, Removing Files/Directories

e Using Material by Vuyisile Ndlovu:
- https://realpython.com/working-with-files-in-python/

D. Koop, CSCI 503/490, Spring 2022 Northern Illinois University 17

https://realpython.com/working-with-files-in-python/

Modules

® |n general, cross-platform! (Linux, Mac, Windows)
* os: translations of operating system commands

e shutil: better support for file and directory management
e fnmatch, glob: match filenames, paths

* os.path: path manipulations

e pathlib: object-oriented approach to path manipulations, also includes
some support for matching paths

D. Koop, CSCI 503/490, Spring 2022 Northern Illinois University 18

Directory Listing

e Old approach: os.listdir

e New approach: os.scandir
- Uses iterators, object-based, faster (fewer stat calls), returns DirEntry

- with os.scandir ('my directory/') as entries:
for entry 1n entries:
print (entry.name)

e Pathlib approach:

- from pathlib import Path
path = Path('my directory/")
for entry 1n path.iterdir () :
print (entry.name)

[V. Ndlovu]

D. Koop, CSCI 503/490, Spring 2022 Northern Illinois University 19

https://realpython.com/working-with-files-in-python/

Listing Files Iin a Directory

o Difference between file and directory
® 1s5f1 1e/is_':1' 1e methods:

- 0s.path.isfile

— 1 -

- DirEntry.1s file
- Path.1s file

e [est while iterating through

- from pathlib import Path
basepath = Path('my directory/")
files 1n basepath = basepath.iterdir ()
for i1tem 1n files 1n basepath:
1f 1tem.1s file():
print (1tem.name)

[V. Ndlovu]

D. Koop, CSCI 503/490, Spring 2022 Northern Illinois University 20

https://realpython.com/working-with-files-in-python/

|isting Subdirectories

e Use isdir/is dir instead

- from pathlib import Path
basepath = Path('my directory/")
files 1n basepath = basepath.iterdir ()
for item in files 1n basepath:
1f 1tem.1s dir () :
print (1tem.name)

D. Koop, CSCI 503/490, Spring 2022 Northern Illinois University 21

File Attributes

e (Getting information about a file is "stat"-ing it (from the system call name)
e Names are similarly a bit esoteric, use documentation
® os.stat Or use .stat methods on DirEntrvy/Path

e Modification time:

- from pathlib import Path
current dir = Path('my directory')
for path 1n current dir.iterdir():
info = path.stat ()
print (1nfo.st mtime)

e AlSO can check existence: path.exists ()

[V. Ndlovu]

D. Koop, CSCI 503/490, Spring 2022 Northern Illinois University 22

https://docs.python.org/3/library/stat.html
https://realpython.com/working-with-files-in-python/

Making Directories

e \Modify the filesystem
o KNow where you currently are first
- os.getcwd () Or Path.cwd (). current working directory
* os.mkdir: single subdirectory
* os.makedirs: multiple subdirs
e pathlib.Path.mkdir: single or multiple directories (with parents=True)

e Can raise exceptions (e.q. file already exists)
e from pathlib import Path
p = Path('example directory/")
p.mkdir ()

[V. Ndlovu]

D. Koop, CSCI 503/490, Spring 2022 Northern Illinois University 23

https://realpython.com/working-with-files-in-python/

Fllename Pattern Matching

® string.endswith/startswith: NO wildcards
e fnmatch: adds * and ? wildcards to use when matching (not just like regex!)

* glob.glob: treats flenames starting with . as special
- can do recursive matchings (e.g. in subdirectories) using * *

e pathlib.Path.glob: object-oriented version of glob

e from pathlib import Path
p = Path('.")
for name 1n p.glob('*.p*"') :
print (name)

[V. Ndlovu]

D. Koop, CSCI 503/490, Spring 2022 Northern Illinois University =~ 24

https://realpython.com/working-with-files-in-python/

Pathname Manipulation

* os.path.split returns tuple (dirname, basename)

- can use os.path.dirname/basename t0O get these only
- os.path.split('/path/to/file.txt") ('"/path/to', 'file.txt')

® os.path.join: Inverse of split
* os.path.splitext: split flename and extension
e pathlib.Path has OOP versions:

- .parent/.name == dirname/basename

— —

~1XesS

ix ~ splitext, also su

- .stem/.su

- / operator (also joinpath ~ join)

D. Koop, CSCI 503/490, Spring 2022 Northern Illinois University 25

Iraversing Directories and Processing riles

e 0s.walk

e for dirpath, dirnames, files 1n os.walk('."'):
print (f'Found directory: {dirpath}')

for file name 1n files:
print (file name)

e Returns three values on loop iteration:
1. The name of the current directory
2. A list of subdirectories in the current directory
3. Alist of files in the current directory

e topdown and followlinks arguments

e pathlib algorithms exist but DIY
[V. Ndlovu]

D. Koop, CSCI 503/490, Spring 2022 Northern Illinois University 26

https://realpython.com/working-with-files-in-python/

lemporary Files and Directories

o tempfile knows system directories for storing temporary files
e deletes the file when it is closed

e from tempfile i1mport TemporaryFile
with TemporarvFile('w+t') as fp:

fp.write('Hello universe!')

fp.seek (0)

fp.read ()

File 1s now closed and removed

e Can also use in with statement (context manager)
e Can also create temporary directories

[V. Ndlovu]

D. Koop, CSCI 503/490, Spring 2022 Northern Illinois University 27

https://realpython.com/working-with-files-in-python/

Deleting Files and Directories

® Fles: os.remove OFf os.unlink, Of pathlib.Path.unlink

e from pathlib 1mport Path
Path ('home/data.txt') .unlink ()

e Directories: rmdir Of shutil.rmtree
- rmdir only works if the directory is empty

- Careful: this deletes the entire directory (and everything inside it)
e shutil.rmtree('my documents/bad dir')

[V. Ndlovu]

D. Koop, CSCI 503/490, Spring 2022 Northern Illinois University ~ 28

https://realpython.com/working-with-files-in-python/

Copying Files & Directories

e shutil.copy: copy file to specified directory
- shutil.copy('path/to/file.txt', 'path/to/dest dir')

e shutil.copy?2 preserves metadata, same syntax

e Copy entire tree: shutil.copytree('data 1', 'datal backup')

[V. Ndlovu]
D. Koop, CSCI 503/490, Spring 2022 Northern Illinois University 29

https://realpython.com/working-with-files-in-python/

Moving and Renaming Files/Directories

* Moving files or directories:
- shutil.move('dir 1/', 'backup/')

e Benaming files or directories:

- OS5 . rername

- pathlib.Path.rename

- data file = Path('data 0l.txt')
data file.rename('data.txt')

[V. Ndlovu]

D. Koop, CSCI 503/490, Spring 2022 Northern Illinois University 30

https://realpython.com/working-with-files-in-python/

Archives

e zipfile: module to deal with zip files

e tarfile: module to deal with tar files, can compress (tar.gz)
® Fasier: shutil.make archive
- Specify base name, format, and root directory to archive

- shutil.make archive ('data/backup', 'tar', 'data/')

e [0 extract, use shutil.unpack archive

[V. Ndlovu]

D. Koop, CSCI 503/490, Spring 2022 Northern Illinois University 31

https://realpython.com/working-with-files-in-python/

