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Question 1
• Which class do all Python classes (indirectly) inherit from? 

A. object 
B. class 
C. base 
D. None of the above
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Question 2
• Given a class Vehicle, which is a valid constructor signature? 

A. def constructor(this, make, model)  
B. def Vehicle(this, make, model)  
C. def __init__(self, make, model)  
D. def Vehicle(self, make, model)

4D. Koop, CSCI 503/490, Spring 2022



Question 3
• Which of the following is true? 

A. Python classes may only have instance methods  
B. Python does not allow multiple inheritance  
C. Python uses the extends keyword to define inheritance  
D. list is a Python class
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Question 4
• Which of the following attributes is intended to be private?  

A. private: attr  

B. __attr  
C. _attr  
D. _attr_ 
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Question 5
• Suppose we have defined a property age for a class. Which decorator is 

used for its setter?  
A. @property.setter  
B. @property.set_age  
C. @age.setter  
D. @setter 
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Duck Typing
• "If it looks like a duck and quacks like a duck, it must be a duck." 
• Python "does not look at an object’s type to determine if it has the right 

interface; instead, the method or attribute is simply called or used" 
• class Rectangle: 
    def area(self): 
        … 

• class Circle: 
    def area(self): 
        … 

• It doesn't matter that they don't have a common base class as long as they 
respond to the methods/attributes we expect: shape.area()

8

[Python Glossary]
D. Koop, CSCI 503/490, Spring 2022

https://docs.python.org/3/glossary.html#term-duck-typing


Multiple Inheritance
• Can have a class inherit from two different superclasses 
• HybridCar inherits from Car and Hybrid 
• Python allows this! 

- class HybridCar(Car, Hybrid): … 

• Problem: how is super() is defined? 
- Diamond Problem 
- Python use the method resolution order (MRO) to determine order of calls
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Method Resolution Order
• The order in which Python checks classes for a method 
• mro() is a class method 
• Square.mro() # [__main__.Square, __main__.Rectangle, object] 

• Order of base classes matters: 
- class HybridCar(Car, Hybrid): 
    pass 
HybridCar.mro() # [__main__.HybridCar, __main__.Car, 
                 __main__.Hybrid, __main__.Vehicle, object] 

- class HybridCar(Hybrid, Car): 
    pass 
HybridCar.mro() # [__main__.HybridCar, __main__.Hybrid, 
                   __main__.Car, __main__.Vehicle, object]
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Assignment 5
• Due Friday 
• Writing a Python Package and Command-Line Tools 
• Same food data 
• Find by brand and description 
• Compare nutrition and ingredients 
• [CSCI 503] Filter by category
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Operator Overloading
• Dunder methods (__add__, __contains__, __len__) 
• Example: 

- class Square(Rectangle): 
    … 
    @property 
    def side(self): 
        return self.h 
    def __add__(self, right): 
        return Square(self.side + right.side) 
    def __repr__(self): 
        return f'{self.__class__.__name__}({self.side})' 
new_square = Square(8) + Square(4) 
new_square # Square(12)
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Mixins
• Sometimes, we just want to add a particular method to a bunch of different 

classes 
• For example: print_as_dict() 
• A mixin class allows us to specify one or more methods and add it as the 

second 
• Caution: Python searches from left to right so a base class should be at the 

right with mixing
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Object-Based Programming
• With Python's libraries, you often don't need to write your own classes. Just 
- Know what libraries are available 
- Know what classes are available 
- Make objects of existing classes 
- Call their methods 

• With inheritance and overriding and polymorphism, we have true object-
oriented programming (OOP)
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Named Tuples
• Tuples are immutable, but cannot refer to with attribute names, only indexing 
• Named tuples add the ability to use dot-notation 
• from collections import namedtuple 
Car = namedtuple('Car', ['make', 'model', 'year', 'color']) 
car1 = Car(make='Toyota', model='Camry', year=2000, 
           color="red") 

• Can use kwargs or positional or mix 
• car2 = Car('Ford', 'F150', 2018, 'gray') 

• Access via dot-notation: 
- car1.make # "Toyota" 

- car2.year # 2018
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SimpleNamespace
• Named tuples do not allow mutation 
• SimpleNamespace does allow mutation: 
• from types import SimpleNamespace 
car3 = SimpleNamespace(make='Toyota', model='Camry', 
                       year=2000, color="red") 

• car3.num_doors = 4 # would fail for namedtuple 

• Doesn't enforce any structure, though

16D. Koop, CSCI 503/490, Spring 2022



Typing
• Dynamic Typing: variable's type can change (what Python does) 
• Static Typing: compiler enforces types, variable types generally don't change 
• Duck Typing: check method/attribute existence, not type 
• Python is a dynamically-typed language (and plans to remain so) 
• …but it has recently added more support for type hinting/annotations that 

allow static type checking 
• Type annotations change nothing at runtime!
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Type Annotations
• def area(width : float, height : float) -> float: 
    return width * height 

• colon (:) after parameter names, followed by type 
• arrow (->) after function signature, followed by type (then final colon) 
• area("abc", 3) # runs, returns "abcabcabc" 

• These won't prevent you from running this function with the wrong 
arguments or returning a value that doesn't satisfy the type annotation 

• Extensions for collections allows inner types to be specified: 
- from typing import List 
names : List[str] = ['Alice', 'Bob'] 

• Any and Optional, too
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mypy
• A static type checker for Python that uses the type annotations to check 

whether types work out 
• $ mypy <script.py> 

- Writes type errors tagged by the line of code that introduced them 
- Can also reveal the types of variables at various parts of the program 

• There is an extension for Jupyter (mypy_ipython), but it basically works by 
converting all cells to a script and then running mypy 

- Cells not tagged in error messages 
- Re-running cells introduces multiple copies of error 
- Deleting cells doesn't remove errors
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Type Checking in Development Environments
• PyCharm can also use the type hints to do static type checking to alert 

programmers to potential issues 
• Microsoft VS Code Integration using Pyright 
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Type Checking Pros & Cons
• Pros: 
- Good for documentation 
- Improve IDEs and linters 
- Build and maintain cleaner architecture 

• Cons: 
- Takes time and effort! 
- Requires modern Python 
- Some penalty for typing imports (can be alleviated)
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When to use typing
• No when learning Python 
• No for short scripts, snippets in notebooks 
• Yes for libraries, especially those used by others 
• Yes for larger projects to better understand flow of code
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Data Classes
• from dataclasses import dataclass 
@dataclass 
class Rectangle: 
    width: float 
    height: float 

• Rectangle(34, 21) # just works! 

• Does a lot of boilerplate tasks 
- Creates basic constructor (__init__) 
- Creates __repr__ method 
- Creates comparison dunder methods (==, !=, <, >, <=, >=)
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Data Classes
• Requires type annotations, but just like other type annotations, they are not 

checked at runtime! 
• Rectangle("abc", "def") # no error! 

• Use mypy to check typing 
• If typing is not important, use typing.Any for types 
• from typing import Any 
from dataclasses import dataclass 
@dataclass 
class Rectangle: 
    width: Any 
    height: Any
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Data Classes
• Can add methods as normal 
• from dataclasses import dataclass 
@dataclass 
class Rectangle: 
    width: float 
    height: float 
 
    def area(self): 
        return self.width * self.height 

• Supports factory methods for more complicated inits 
• __post_init__ method for extra processing after __init__
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Dealing with Errors
• Can explicitly check for errors at each step 
- Check for division by zero 
- Check for invalid parameter value (e.g. string instead of int) 

• Sometimes all of this gets in the way and can't be addressed succinctly 
- Too many potential errors to check 
- Cannot handle groups of the same type of errors together 

• Allow programmer to determine when and how to handle issues 
- Allow things to go wrong and handle them instead 
- Allow errors to be propagated and addressed once
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Advantages of Exceptions
• Separate error-handling code from "regular" code 
• Allows propagation of errors up the call stack 
• Errors can be grouped and differentiated
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Try-Except
• The try statement has the following form: 
try: 
   <body> 
except <ErrorType>*: 
   <handler> 

• When Python encounters a try statement, it attempts to execute the 
statements inside the body. 

• If there is no error, control passes to the next statement after the try…
except (unless else or finally clauses) 

• Note: except not catch
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Try-Except
• If an error occurs while executing the body, Python looks for an except clause 

with a matching error type. If one is found, the handler code is executed. 
• try: 
    c = a / b 
except ZeroDivisionError: 
    c = 0 

• Without the except clause (or one that doesn't match), the code crashes
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Exception Hierarchy
• Python's BaseException class is the base class for all exceptions 
• Four primary subclasses:  

- SystemExit: just terminates program execution 
- KeyboardInterrupt: occurs when user types Crl+C or selects Interrupt 

Kernel in Jupyter 
- GeneratorExit: generator done producing values 
- Exception: most exceptions subclass from this! 

• ZeroDivisionError, NameError, ValueError, IndexError 
• Most exception handling is done for these exceptions
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Exception Hierarchy
• Except clauses match when error is an instance of specified exception class 
• Remember isinstance matches objects of subclasses! 
• try: 
    c = a / b 
except Exception: 
    c = 0 

• Can also have a bare except clause (matches any exception!) 
• try: 
    c, d = a / b 
except: 
    c, d = 0, 0 

• …but DON'T do this!
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Exception Granularity
• If you catch any exception using a base class near the top of the hierarchy, 

you may be masking code errors 
• try: 
    c, d = a / b 
except Exception: 
    c, d = 0, 0 

• Remember Exception catches any exception is an instance of Exception 
• Catches TypeError: cannot unpack non-iterable float object  
• Better to have more granular (specific) exceptions! 
• We don't want to catch the TypeError because this is a programming error 

not a runtime error
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Exception Locality
• Generally, want try statement to be specific to a part of the code 
• try: 
    with open('missing-file.dat') as f: 
        lines = f.readlines() 
    with open('output-file.dat', 'w') as fout: 
        fout.write("Testing") 
except OSError: 
    print("An error occurred processing files.") 

• We don't know whether reading failed or writing failed 
• Maybe that is ok, but having multiple try-except clauses might help
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Exception Locality
• try: 
    fname = 'missing-file.dat' 
    with open(fname) as f: 
        lines = f.readlines() 
except OSError: 
    print(f"An error occurred reading {fname}") 
try: 
    out_fname = 'output-file.dat' 
    with open('output-file.dat', 'w') as fout: 
        fout.write("Testing") 
except OSError: 
    print(f"An error occurred writing {out_fname}")
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Multiple Except Clauses
• May also be able to address with multiple except clauses: 
• try: 
    fname = 'missing-file.dat' 
    with open(fname) as f: 
        lines = f.readlines() 
    out_fname = 'output-file.dat' 
    with open('output-file.dat', 'w') as fout: 
        fout.write("Testing") 
except FileNotFoundError: 
    print(f"File {fname} does not exist") 
except PermissionError: 
    print(f"Cannot write to {out_fname}") 

• However, other OSError problems (disk full, etc.) won't be caught
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Multiple Except Clauses
• Function like an if/elif sequence 
• Checked in order so put more granular exceptions earlier! 
• try: 
    fname = 'missing-file.dat' 
    with open(fname) as f: 
        lines = f.readlines() 
    out_fname = 'output-file.dat' 
    with open('output-file.dat', 'w') as fout: 
        fout.write("Testing") 
except FileNotFoundError: 
    print(f"File {fname} does not exist") 
except OSError: 
    print("An error occurred processing files")
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Bare Except
• The bare except clause acts as a catch-all (elif any other exception) 
• try: 
    fname = 'missing-file.dat' 
    with open(fname) as f: 
        lines = f.readlines() 
    out_fname = 'output-file.dat' 
    with open('output-file.dat', 'w') as fout: 
        fout.write("Testing") 
except FileNotFoundError: 
    print(f"File {fname} does not exist") 
except OSError: 
    print("An error occurred processing files") 
except: 
    print("Any other error goes here")
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Handling Multiple Exceptions at Once
• Can process multiple exceptions with one clause, use tuple of classes 
• Allows some specificity but without repeating 
• try: 
    fname = 'missing-file.dat' 
    with open(fname) as f: 
        lines = f.readlines() 
    out_fname = 'output-file.dat' 
    with open('output-file.dat', 'w') as fout: 
        fout.write("Testing") 
except (FileNotFoundError, PermissionError): 
    print("An error occurred processing files")
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Exception Objects
• Exceptions themselves are a type of object. 
• If you follow the error type with an identifier in an except clause, Python will 

assign that identifier the actual exception object. 
• Sometimes exceptions encode information that is useful for handling 
• try: 
    fname = 'missing-file.dat' 
    with open(fname) as f: 
        lines = f.readlines() 
    out_fname = 'output-file.dat' 
    with open('output-file.dat', 'w') as fout: 
        fout.write("Testing") 
except OSError as e: 
    print(e.errno, e.filename, e)
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