
Programming Principles in Python (CSCI 503/490)

Exceptions

Dr. David Koop

D. Koop, CSCI 503/490, Spring 2022

2

Quiz

D. Koop, CSCI 503/490, Spring 2022

Question 1
• Which class do all Python classes (indirectly) inherit from?

A. object
B. class
C. base
D. None of the above

3D. Koop, CSCI 503/490, Spring 2022

Question 2
• Given a class Vehicle, which is a valid constructor signature?

A. def constructor(this, make, model)
B. def Vehicle(this, make, model)
C. def __init__(self, make, model)
D. def Vehicle(self, make, model)

4D. Koop, CSCI 503/490, Spring 2022

Question 3
• Which of the following is true?

A. Python classes may only have instance methods
B. Python does not allow multiple inheritance
C. Python uses the extends keyword to define inheritance
D. list is a Python class

5D. Koop, CSCI 503/490, Spring 2022

Question 4
• Which of the following attributes is intended to be private?

A. private: attr

B. __attr
C. _attr
D. _attr_

6D. Koop, CSCI 503/490, Spring 2022

Question 5
• Suppose we have defined a property age for a class. Which decorator is

used for its setter?
A. @property.setter
B. @property.set_age
C. @age.setter
D. @setter

7D. Koop, CSCI 503/490, Spring 2022

Duck Typing
• "If it looks like a duck and quacks like a duck, it must be a duck."
• Python "does not look at an object’s type to determine if it has the right

interface; instead, the method or attribute is simply called or used"
• class Rectangle:
 def area(self):
 …

• class Circle:
 def area(self):
 …

• It doesn't matter that they don't have a common base class as long as they
respond to the methods/attributes we expect: shape.area()

8

[Python Glossary]
D. Koop, CSCI 503/490, Spring 2022

https://docs.python.org/3/glossary.html#term-duck-typing

Multiple Inheritance
• Can have a class inherit from two different superclasses
• HybridCar inherits from Car and Hybrid
• Python allows this!

- class HybridCar(Car, Hybrid): …

• Problem: how is super() is defined?
- Diamond Problem
- Python use the method resolution order (MRO) to determine order of calls

9D. Koop, CSCI 503/490, Spring 2022

Method Resolution Order
• The order in which Python checks classes for a method
• mro() is a class method
• Square.mro() # [__main__.Square, __main__.Rectangle, object]

• Order of base classes matters:
- class HybridCar(Car, Hybrid):
 pass
HybridCar.mro() # [__main__.HybridCar, __main__.Car,
 __main__.Hybrid, __main__.Vehicle, object]

- class HybridCar(Hybrid, Car):
 pass
HybridCar.mro() # [__main__.HybridCar, __main__.Hybrid,
 __main__.Car, __main__.Vehicle, object]

10D. Koop, CSCI 503/490, Spring 2022

Assignment 5
• Due Friday
• Writing a Python Package and Command-Line Tools
• Same food data
• Find by brand and description
• Compare nutrition and ingredients
• [CSCI 503] Filter by category

11D. Koop, CSCI 503/490, Spring 2022

http://faculty.cs.niu.edu/~dakoop/cs503-2022sp/assignment5.html

Operator Overloading
• Dunder methods (__add__, __contains__, __len__)
• Example:

- class Square(Rectangle):
 …
 @property
 def side(self):
 return self.h
 def __add__(self, right):
 return Square(self.side + right.side)
 def __repr__(self):
 return f'{self.__class__.__name__}({self.side})'
new_square = Square(8) + Square(4)
new_square # Square(12)

12D. Koop, CSCI 503/490, Spring 2022

Mixins
• Sometimes, we just want to add a particular method to a bunch of different

classes
• For example: print_as_dict()
• A mixin class allows us to specify one or more methods and add it as the

second
• Caution: Python searches from left to right so a base class should be at the

right with mixing

13D. Koop, CSCI 503/490, Spring 2022

Object-Based Programming
• With Python's libraries, you often don't need to write your own classes. Just
- Know what libraries are available
- Know what classes are available
- Make objects of existing classes
- Call their methods

• With inheritance and overriding and polymorphism, we have true object-
oriented programming (OOP)

14

[Deitel & Deitel]
D. Koop, CSCI 503/490, Spring 2022

Named Tuples
• Tuples are immutable, but cannot refer to with attribute names, only indexing
• Named tuples add the ability to use dot-notation
• from collections import namedtuple
Car = namedtuple('Car', ['make', 'model', 'year', 'color'])
car1 = Car(make='Toyota', model='Camry', year=2000,
 color="red")

• Can use kwargs or positional or mix
• car2 = Car('Ford', 'F150', 2018, 'gray')

• Access via dot-notation:
- car1.make # "Toyota"

- car2.year # 2018

15D. Koop, CSCI 503/490, Spring 2022

SimpleNamespace
• Named tuples do not allow mutation
• SimpleNamespace does allow mutation:
• from types import SimpleNamespace
car3 = SimpleNamespace(make='Toyota', model='Camry',
 year=2000, color="red")

• car3.num_doors = 4 # would fail for namedtuple

• Doesn't enforce any structure, though

16D. Koop, CSCI 503/490, Spring 2022

Typing
• Dynamic Typing: variable's type can change (what Python does)
• Static Typing: compiler enforces types, variable types generally don't change
• Duck Typing: check method/attribute existence, not type
• Python is a dynamically-typed language (and plans to remain so)
• …but it has recently added more support for type hinting/annotations that

allow static type checking
• Type annotations change nothing at runtime!

17

[RealPython, G. A. Hjelle]
D. Koop, CSCI 503/490, Spring 2022

https://realpython.com/python-type-checking/

Type Annotations
• def area(width : float, height : float) -> float:
 return width * height

• colon (:) after parameter names, followed by type
• arrow (->) after function signature, followed by type (then final colon)
• area("abc", 3) # runs, returns "abcabcabc"

• These won't prevent you from running this function with the wrong
arguments or returning a value that doesn't satisfy the type annotation

• Extensions for collections allows inner types to be specified:
- from typing import List
names : List[str] = ['Alice', 'Bob']

• Any and Optional, too

18D. Koop, CSCI 503/490, Spring 2022

mypy
• A static type checker for Python that uses the type annotations to check

whether types work out
• $ mypy <script.py>

- Writes type errors tagged by the line of code that introduced them
- Can also reveal the types of variables at various parts of the program

• There is an extension for Jupyter (mypy_ipython), but it basically works by
converting all cells to a script and then running mypy

- Cells not tagged in error messages
- Re-running cells introduces multiple copies of error
- Deleting cells doesn't remove errors

19D. Koop, CSCI 503/490, Spring 2022

Type Checking in Development Environments
• PyCharm can also use the type hints to do static type checking to alert

programmers to potential issues
• Microsoft VS Code Integration using Pyright

20D. Koop, CSCI 503/490, Spring 2022

https://github.com/microsoft/pyright

Type Checking Pros & Cons
• Pros:
- Good for documentation
- Improve IDEs and linters
- Build and maintain cleaner architecture

• Cons:
- Takes time and effort!
- Requires modern Python
- Some penalty for typing imports (can be alleviated)

21

[RealPython, G. A. Hjelle]
D. Koop, CSCI 503/490, Spring 2022

https://realpython.com/python-type-checking/

When to use typing
• No when learning Python
• No for short scripts, snippets in notebooks
• Yes for libraries, especially those used by others
• Yes for larger projects to better understand flow of code

22

[RealPython, G. A. Hjelle]
D. Koop, CSCI 503/490, Spring 2022

https://realpython.com/python-type-checking/

Data Classes
• from dataclasses import dataclass
@dataclass
class Rectangle:
 width: float
 height: float

• Rectangle(34, 21) # just works!

• Does a lot of boilerplate tasks
- Creates basic constructor (__init__)
- Creates __repr__ method
- Creates comparison dunder methods (==, !=, <, >, <=, >=)

23D. Koop, CSCI 503/490, Spring 2022

Data Classes
• Requires type annotations, but just like other type annotations, they are not

checked at runtime!
• Rectangle("abc", "def") # no error!

• Use mypy to check typing
• If typing is not important, use typing.Any for types
• from typing import Any
from dataclasses import dataclass
@dataclass
class Rectangle:
 width: Any
 height: Any

24D. Koop, CSCI 503/490, Spring 2022

Data Classes
• Can add methods as normal
• from dataclasses import dataclass
@dataclass
class Rectangle:
 width: float
 height: float

 def area(self):
 return self.width * self.height

• Supports factory methods for more complicated inits
• __post_init__ method for extra processing after __init__

25D. Koop, CSCI 503/490, Spring 2022

26

Exceptions

D. Koop, CSCI 503/490, Spring 2022

Dealing with Errors
• Can explicitly check for errors at each step
- Check for division by zero
- Check for invalid parameter value (e.g. string instead of int)

• Sometimes all of this gets in the way and can't be addressed succinctly
- Too many potential errors to check
- Cannot handle groups of the same type of errors together

• Allow programmer to determine when and how to handle issues
- Allow things to go wrong and handle them instead
- Allow errors to be propagated and addressed once

27D. Koop, CSCI 503/490, Spring 2022

Advantages of Exceptions
• Separate error-handling code from "regular" code
• Allows propagation of errors up the call stack
• Errors can be grouped and differentiated

28

[Java Tutorial, Oracle]
D. Koop, CSCI 503/490, Spring 2022

https://docs.oracle.com/javase/tutorial/essential/exceptions/advantages.html

Try-Except
• The try statement has the following form:
try:
 <body>
except <ErrorType>*:
 <handler>

• When Python encounters a try statement, it attempts to execute the
statements inside the body.

• If there is no error, control passes to the next statement after the try…
except (unless else or finally clauses)

• Note: except not catch

29D. Koop, CSCI 503/490, Spring 2022

Try-Except
• If an error occurs while executing the body, Python looks for an except clause

with a matching error type. If one is found, the handler code is executed.
• try:
 c = a / b
except ZeroDivisionError:
 c = 0

• Without the except clause (or one that doesn't match), the code crashes

30D. Koop, CSCI 503/490, Spring 2022

Exception Hierarchy
• Python's BaseException class is the base class for all exceptions
• Four primary subclasses:

- SystemExit: just terminates program execution
- KeyboardInterrupt: occurs when user types Crl+C or selects Interrupt

Kernel in Jupyter
- GeneratorExit: generator done producing values
- Exception: most exceptions subclass from this!

• ZeroDivisionError, NameError, ValueError, IndexError
• Most exception handling is done for these exceptions

31D. Koop, CSCI 503/490, Spring 2022

Exception Hierarchy
• Except clauses match when error is an instance of specified exception class
• Remember isinstance matches objects of subclasses!
• try:
 c = a / b
except Exception:
 c = 0

• Can also have a bare except clause (matches any exception!)
• try:
 c, d = a / b
except:
 c, d = 0, 0

• …but DON'T do this!

32D. Koop, CSCI 503/490, Spring 2022

Exception Granularity
• If you catch any exception using a base class near the top of the hierarchy,

you may be masking code errors
• try:
 c, d = a / b
except Exception:
 c, d = 0, 0

• Remember Exception catches any exception is an instance of Exception
• Catches TypeError: cannot unpack non-iterable float object
• Better to have more granular (specific) exceptions!
• We don't want to catch the TypeError because this is a programming error

not a runtime error

33D. Koop, CSCI 503/490, Spring 2022

Exception Locality
• Generally, want try statement to be specific to a part of the code
• try:
 with open('missing-file.dat') as f:
 lines = f.readlines()
 with open('output-file.dat', 'w') as fout:
 fout.write("Testing")
except OSError:
 print("An error occurred processing files.")

• We don't know whether reading failed or writing failed
• Maybe that is ok, but having multiple try-except clauses might help

34

[Deitel & Deitel]
D. Koop, CSCI 503/490, Spring 2022

Exception Locality
• try:
 fname = 'missing-file.dat'
 with open(fname) as f:
 lines = f.readlines()
except OSError:
 print(f"An error occurred reading {fname}")
try:
 out_fname = 'output-file.dat'
 with open('output-file.dat', 'w') as fout:
 fout.write("Testing")
except OSError:
 print(f"An error occurred writing {out_fname}")

35D. Koop, CSCI 503/490, Spring 2022

Multiple Except Clauses
• May also be able to address with multiple except clauses:
• try:
 fname = 'missing-file.dat'
 with open(fname) as f:
 lines = f.readlines()
 out_fname = 'output-file.dat'
 with open('output-file.dat', 'w') as fout:
 fout.write("Testing")
except FileNotFoundError:
 print(f"File {fname} does not exist")
except PermissionError:
 print(f"Cannot write to {out_fname}")

• However, other OSError problems (disk full, etc.) won't be caught

36D. Koop, CSCI 503/490, Spring 2022

Multiple Except Clauses
• Function like an if/elif sequence
• Checked in order so put more granular exceptions earlier!
• try:
 fname = 'missing-file.dat'
 with open(fname) as f:
 lines = f.readlines()
 out_fname = 'output-file.dat'
 with open('output-file.dat', 'w') as fout:
 fout.write("Testing")
except FileNotFoundError:
 print(f"File {fname} does not exist")
except OSError:
 print("An error occurred processing files")

37D. Koop, CSCI 503/490, Spring 2022

Multiple Except Clauses
• Function like an if/elif sequence
• Checked in order so put more granular exceptions earlier!
• try:
 fname = 'missing-file.dat'
 with open(fname) as f:
 lines = f.readlines()
 out_fname = 'output-file.dat'
 with open('output-file.dat', 'w') as fout:
 fout.write("Testing")
except OSError:
 print("An error occurred processing files")
except FileNotFoundError:
 print(f"File {fname} does not exist")

38D. Koop, CSCI 503/490, Spring 2022

Multiple Except Clauses
• Function like an if/elif sequence
• Checked in order so put more granular exceptions earlier!
• try:
 fname = 'missing-file.dat'
 with open(fname) as f:
 lines = f.readlines()
 out_fname = 'output-file.dat'
 with open('output-file.dat', 'w') as fout:
 fout.write("Testing")
except OSError:
 print("An error occurred processing files")
except FileNotFoundError:
 print(f"File {fname} does not exist")

38D. Koop, CSCI 503/490, Spring 2022

Bare Except
• The bare except clause acts as a catch-all (elif any other exception)
• try:
 fname = 'missing-file.dat'
 with open(fname) as f:
 lines = f.readlines()
 out_fname = 'output-file.dat'
 with open('output-file.dat', 'w') as fout:
 fout.write("Testing")
except FileNotFoundError:
 print(f"File {fname} does not exist")
except OSError:
 print("An error occurred processing files")
except:
 print("Any other error goes here")

39D. Koop, CSCI 503/490, Spring 2022

Handling Multiple Exceptions at Once
• Can process multiple exceptions with one clause, use tuple of classes
• Allows some specificity but without repeating
• try:
 fname = 'missing-file.dat'
 with open(fname) as f:
 lines = f.readlines()
 out_fname = 'output-file.dat'
 with open('output-file.dat', 'w') as fout:
 fout.write("Testing")
except (FileNotFoundError, PermissionError):
 print("An error occurred processing files")

40D. Koop, CSCI 503/490, Spring 2022

Exception Objects
• Exceptions themselves are a type of object.
• If you follow the error type with an identifier in an except clause, Python will

assign that identifier the actual exception object.
• Sometimes exceptions encode information that is useful for handling
• try:
 fname = 'missing-file.dat'
 with open(fname) as f:
 lines = f.readlines()
 out_fname = 'output-file.dat'
 with open('output-file.dat', 'w') as fout:
 fout.write("Testing")
except OSError as e:
 print(e.errno, e.filename, e)

41D. Koop, CSCI 503/490, Spring 2022

