
Programming Principles in Python (CSCI 503/490)

Object-Oriented Programming

Dr. David Koop

D. Koop, CSCI 503/490, Spring 2022

Reloading a Module?
• If you re-import a module, what happens?

- import my_module
my_module.SECRET_NUMBER # 42

- Change the definition of SECRET_NUMBER to 14
- import my_module
my_module.SECRET_NUMBER # Still 42!

• Modules are cached so they are not reloaded on each import call
• Can reload a module via importlib.reload(<module>)
• Be careful because dependencies will persist! (Order matters)

2D. Koop, CSCI 503/490, Spring 2022

Python Packages
• A package is basically a collection of modules in a directory subtree
• Structures a module namespace by allowing dotted names
• Example:

- test_pkg/
 __init__.py
 foo.py
 bar.py
 baz/
 fun.py

• For packages that are to be executed as scripts, __main__.py can also be
added

3D. Koop, CSCI 503/490, Spring 2022

Finding & Installing Packages
• Python Package Index (PyPI) is the standard repository (https://pypi.org) and

pip (pip installs packages) is the official python package installer
• Anaconda is a package index, conda is a package manager
• To install packages:

- pip install <package-name>

- conda install <package-name>

- Jupyter: Add % (%pip, %conda)
• Both pip and conda support environments

- venv

- conda env

4D. Koop, CSCI 503/490, Spring 2022

https://pypi.org
https://anaconda.org

Environments
• Both pip and conda support environments
- venv
- conda env

• Idea is that you can create different environments for different work
- environment for cs503
- environment for research
- environment for each project

5D. Koop, CSCI 503/490, Spring 2022

Object-Oriented Programming Concepts
• Abstraction: simplify, hide implementation details, don't repeat yourself
• Encapsulation: represent an entity fully, keep attributes and methods together
• Inheritance: reuse (don't reinvent the wheel), specialization
• Polymorphism: methods are handled by a single interface with different

implementations (overriding)

6D. Koop, CSCI 503/490, Spring 2022

Vehicle Example
• Suppose we are implementing a city simulation, and want to model vehicles

driving on the road
• How do we represent a vehicle?
- Information (attributes): make, model, year, color, num_doors, engine_type,

mileage, acceleration, top_speed, braking_speed
- Methods (actions): compute_estimated_value(), drive(num_seconds,

acceleration), turn_left(), turn_right(), change_lane(dir), brake(),
check_collision(other_vehicle)

7D. Koop, CSCI 503/490, Spring 2022

Class vs. Instance
• A class is a blueprint for creating instances
- e.g. Vehicle

• An instance is an single object created from a class
- e.g. 2000 Red Toyota Camry
- Each object has its own attributes
- Instance methods produce results unique to each particular instance

8D. Koop, CSCI 503/490, Spring 2022

Classes and Instances in Python
• Class Definition:

- class Vehicle:
 def __init__(self, make, model, year, color):
 self.make = make
 self.model = model
 self.year = year
 self.color = color

 def age(self):
 return 2022 - self.year

• Instances:
- car1 = Vehicle('Toyota', 'Camry', 2000, 'red')

- car2 = Vehicle('Dodge', 'Caravan', 2015, 'gray')

9D. Koop, CSCI 503/490, Spring 2022

Assignment 4
• Due Today
• Books in Different Languages
• Reading & Writing Files
• Iterators
• Statistics
• String Formatting
• CSCI 503 students compute and output two additional fields

10D. Koop, CSCI 503/490, Spring 2022

http://faculty.cs.niu.edu/~dakoop/cs503-2022sp/assignment4.html

Assignment 5
• Release before Spring Break but due at the end of the week after it
• Revisit the food data but now create a Python package and command-line

tool to support our analyses

11D. Koop, CSCI 503/490, Spring 2022

Creating and Using Instances
• Creating instances:
- Constructor expressions specify the name of the class to instantiate and

specify any arguments to the constructor (not including self)
- Returns new object
- car1 = Vehicle('Toyota', 'Camry', 2000, 'red')

- car2 = Vehicle('Dodge', 'Caravan', 2015, 'gray')
• Calling an instance method

- car1.age()

- car1.set_age(20)

- Note self is not passed explicitly, it's car1 (instance before the dot)

12D. Koop, CSCI 503/490, Spring 2022

Used Objects Many Times Before
• Everything in Python is an object!

- my_list = list()

- my_list.append(3)

- num = int('64')

- name = "Gerald"

- name.upper()

13D. Koop, CSCI 503/490, Spring 2022

Visibility
• In some languages, encapsulation allows certain attributes and methods to

be hidden from those using an instance
• public (visible/available) vs. private (internal only)
• Python does not have visibility descriptors, but rather conventions (PEP8)
- Attributes & methods with a leading underscore (_) are intended as private
- Others are public
- You can still access private names if you want but generally shouldn't:

• print(car1._color_hex)

- Double underscores leads to name mangling:
self.__internal_vin is stored at self._Vehicle__internal_vin

14D. Koop, CSCI 503/490, Spring 2022

Representation methods
• Printing objects:

- print(car1) # <__main__.Vehicle object at 0x7efc087c6b20>

• "Dunder-methods": __init__
• Two for representing objects:

- __str__: human-readable
- __repr__: official, machine-readable

• >>> now = datetime.datetime.now()
>>> now.__str__()
'2020-12-27 22:28:00.324317'
>>> now.__repr__()
'datetime.datetime(2020, 12, 27, 22, 28, 0, 324317)'

15

[https://www.journaldev.com/22460/python-str-repr-functions]
D. Koop, CSCI 503/490, Spring 2022

https://www.journaldev.com/22460/python-str-repr-functions

Representation methods
• Car example:

- class Vehicle:
 …
 def __str__(self):
 return f'{self.year} {self.make} {self.model}'

• Don't call print in this method! Return a string
• When using, don't call directly, use str or repr

- str(car1)

• print internally calls __str__
- print(car1)

16D. Koop, CSCI 503/490, Spring 2022

Other Dunder Methods
• __eq__(<other>): return True if two objects are equal
• __lt__(<other>): return True if object < other
• Collections:

- __len__(): return number of items
- __contains__(item): return True if collection contains item
- __iter__(): returns iterator

• __getitem__(index): return item at index (which could be a key)
• + More

17D. Koop, CSCI 503/490, Spring 2022

Properties
• Common pattern is getters and setters:

- def age(self):
 return 2022 - self.year

- def set_age(self, age):
 self.year = 2022 - age

• In some sense, this is no different than year except that we don't want to
store age separate from year (they should be linked)

• Properties allow transformations and checks but are accessed like attributes
• @property
def age(self):
 return 2022 - self.year

• car1.age # 22

18D. Koop, CSCI 503/490, Spring 2022

Properties
• Can also define setters
• Syntax is a bit strange, want to link the two: @<property-name>.setter
• Method has the same name as the property: How?
• Decorators (@<decorator-name>) do some magic
• @property
def age(self):
 return 2022 - self.year

• @age.setter
def age(self, age):
 self.year = 2022 - age

• car1.age = 20

19D. Koop, CSCI 503/490, Spring 2022

Properties
• Add validity checks!
• First car was 1885 so let's not allow ages greater than that (or negative ages)
• @age.setter
def age(self, age):
 if age < 0 or age > 2022 - 1885:
 print("Invalid age, will not set")
 else:
 self.year = 2022 - age

• Better: raise exception (later)

20D. Koop, CSCI 503/490, Spring 2022

Class Attributes
• We can add class attributes inside the class indentation:
• Access by prefixing with class name or self

- class Vehicle:
 CURRENT_YEAR = 2022
 …
 @age.setter
 def age(self, age):
 if age < 0 or age > Vehicle.CURRENT_YEAR - 1885:
 print("Invalid age, will not set")
 else:
 self.year = self.CURRENT_YEAR - age

• Constants should be CAPITALIZED
• This is not a great constant! (EARLIEST_YEAR = 1885 would be!)

21D. Koop, CSCI 503/490, Spring 2022

Class and Static Methods
• Use @classmethod and @staticmethod decorators
• Difference: class methods receive class as argument, static methods do not
• class Square(Rectangle):
 DEFAULT_SIDE = 10
 …

 @classmethod
 def set_default_side(cls, s):
 cls.DEFAULT_SIDE = s

 @staticmethod
 def set_default_side_static(s):
 Square.DEFAULT_SIDE = s

22D. Koop, CSCI 503/490, Spring 2022

Class and Static Methods
• class Square(Rectangle):
 DEFAULT_SIDE = 10

 def __init__(self, side=None):
 if side is None:
 side = self.DEFAULT_SIDE
 super().__init__(side, side)
 …

• Square.set_default_side(20)
s2 = Square()
s2.side # 20

• Square.set_default_side_static(30)
s3 = Square()
s3.side # 30

23D. Koop, CSCI 503/490, Spring 2022

Class and Static Methods
• class NewSquare(Square):
 DEFAULT_SIDE = 100

• NewSquare.set_default_side(200)
s5 = NewSquare()
s5.side # 200

• NewSquare.set_default_side_static(300)
s6 = NewSquare()
s6.side # !!! 200 !!!

• Why?
- The static method sets Square.DEFAULT_SIDE not the
NewSquare.DEFAULT_SIDE

- self.DEFAULT_SIDE resolves to NewSquare.DEFAULT_SIDE

24D. Koop, CSCI 503/490, Spring 2022

Class and Static Methods
• class NewSquare(Square):
 DEFAULT_SIDE = 100

• NewSquare.set_default_side(200)
s5 = NewSquare()
s5.side # 200

• NewSquare.set_default_side_static(300)
s6 = NewSquare()
s6.side # !!! 200 !!!

• Why?

25D. Koop, CSCI 503/490, Spring 2022

Inheritance
• Is-a relationship: Car is a Vehicle, Truck is a Vehicle
• Make sure it isn't composition (has-a) relationship: Vehicle has wheels,

Vehicle has a steering wheel
• Subclass is specialization of base class (superclass)
- Car is a subclass of Vehicle, Truck is a subclass of Vehicle

• Can have an entire hierarchy of classes (e.g. Chevy Bolt is subclass of Car
which is a subclass of Vehicle)

• Single inheritance: only one base class
• Multiple inheritance: allows more than base class
- Many languages don't support, Python does

26D. Koop, CSCI 503/490, Spring 2022

Subclass
• Just put superclass(-es) in parentheses after the class declaration
• class Car(Vehicle):
 def __init__(self, make, model, year, color, num_doors):
 super().__init__(make, model, year, color)
 self.num_doors = num_doors

 def open_door(self):
 …

• super() is a special method that locates the base class
- Constructor should call superclass constructor, then initialize its own extra

attributes
- Instance methods can use super, too

27D. Koop, CSCI 503/490, Spring 2022

Overriding Methods
• class Rectangle:
 def __init__(self, height,
 width):
 self.h = height
 self.w = weight

 def set_height(self, height):
 self.h = height
 def area(self):
 return self.h * self.w

• class Square(Rectangle):
 def __init__(self, side):
 super().__init__(side, side)

 def set_height(self, height):
 self.h = height
 self.w = height

• s = Square(4)

• s.set_height(8)

- Which method is called?

28D. Koop, CSCI 503/490, Spring 2022

Overriding Methods
• class Rectangle:
 def __init__(self, height,
 width):
 self.h = height
 self.w = weight

 def set_height(self, height):
 self.h = height
 def area(self):
 return self.h * self.w

• class Square(Rectangle):
 def __init__(self, side):
 super().__init__(side, side)

 def set_height(self, height):
 self.h = height
 self.w = height

• s = Square(4)

• s.set_height(8)

- Which method is called?
- Polymorphism
- Resolves according to inheritance

hierarchy
• s.area()

- Which method is called?

29D. Koop, CSCI 503/490, Spring 2022

Overriding Methods
• class Rectangle:
 def __init__(self, height,
 width):
 self.h = height
 self.w = weight

 def set_height(self, height):
 self.h = height
 def area(self):
 return self.h * self.w

• class Square(Rectangle):
 def __init__(self, side):
 super().__init__(side, side)

 def set_height(self, height):
 self.h = height
 self.w = height

• s = Square(4)

• s.set_height(8)

- Which method is called?
- Polymorphism
- Resolves according to inheritance

hierarchy
• s.area() # 64

- Which method is called?
- If no method defined, goes up the

inheritance hierarchy until found

30D. Koop, CSCI 503/490, Spring 2022

