
Programming Principles in Python (CSCI 503/490)

Principles & Notebooks

Dr. David Koop

D. Koop, CSCI 503/490, Spring 2022

Administrivia
• Course Web Site
• TA: Mohammed Abdul Moyeed (Blackboard Collaborate)
• Syllabus
- Plagiarism
- Accommodations

• Assignments
• Tests: 2 (Feb. 23, April 6) and Final (May 9)
• Course is offered to both undergraduates (CS 490) and graduates (CS 503)
- Grad students have extra topics, exam questions, assignment tasks

2D. Koop, CSCI 503/490, Spring 2022

http://faculty.cs.niu.edu/~dakoop/cs503-2022sp

Office Hours & Email
• Moyeed's office hours will be held via Blackboard Collaborate
- TuTh: 11:30am-2:30pm

• Prof. Koop's office hours will be held in person
- MW: 10:45am-12pm, or by appointment (can be Zoom)

• You do not need an appointment to stop by during scheduled office hours,
but please adhere to university regulations (Protecting the Pack)

• If you wish to meet virtually, please schedule an appointment
• If you need an appointment, please email me with details about what you

wish to discuss and times that would work for you
• Many questions can be answered via email. Please consider writing an

email before scheduling a meeting.
3D. Koop, CSCI 503/490, Spring 2022

https://www.niu.edu/protecting-the-pack/index.shtml

Course Material
• Textbook:
- Recommended: Python for Programmers
- Good overview + data science examples

• Many other resources are available:
- https://wiki.python.org/moin/

BeginnersGuide
- https://wiki.python.org/moin/

IntroductoryBooks
- http://www.pythontutor.com
- https://www.python-course.eu
- https://software-carpentry.org/lessons/

4D. Koop, CSCI 503/490, Spring 2022

http://www.apple.com
https://wiki.python.org/moin/BeginnersGuide
https://wiki.python.org/moin/BeginnersGuide
https://wiki.python.org/moin/IntroductoryBooks
https://wiki.python.org/moin/IntroductoryBooks
http://www.pythontutor.com
https://www.python-course.eu
https://software-carpentry.org/lessons/

Course Material
• Software:
- Anaconda Python Distribution (http://

anaconda.com/download/): makes
installing python packages easier

- Jupyter Notebook: Web-based interface for
interactively writing & executing Python
code

- JupyterLab: An updated web-based
interface that includes the notebook and
other cool features

- JupyterHub: Access everything through a
server

5D. Koop, CSCI 503/490, Spring 2022

http://anaconda.com/download/
http://anaconda.com/download/

Why Python?
• High-level, readable
• Productivity
• Large standard library
• Libraries, Libraries, Libraries
• What about Speed?
- What speed are we measuring?
- Time to code vs. time to execute

6D. Koop, CSCI 503/490, Spring 2022

JupyterLab and Jupyter Notebooks

7

[JupyterLab Documentation]
D. Koop, CSCI 503/490, Spring 2022

https://jupyterlab.readthedocs.io/en/stable/getting_started/overview.html

Jupyter Notebooks
• Display rich representations and text
• Uses Web technology
• Cell-based
• Built-in editor
• GitHub displays notebooks

8

[Jupyter]
D. Koop, CSCI 503/490, Spring 2022

http://jupyter.org

Other JupyterLab Features
• Terminal
- Similar to what you see on turing/

hopper but for your local machine
• File Viewers
- CSV
- Plugins available

• Console
- Can be linked to notebooks

9D. Koop, CSCI 503/490, Spring 2022

Using Python & JupyterLab Locally
• www.anaconda.com/download/
• Anaconda has JupyterLab
• Use Python 3.9
• Anaconda Navigator
- GUI application for managing Python

environment
- Can install packages
- Can start JupyterLab

• Can also use the shell to do this:
- $ jupyter lab

- $ conda install <pkg_name>

10D. Koop, CSCI 503/490, Spring 2022

https://www.anaconda.com/download/

Using Python & JupyterLab on Course Server
• https://tiger.cs.niu.edu/jupyter/
• Login with you Z-ID (lowercase z)
• You should have received an email with your password
• Advanced:
- Can add your own conda environments in your user directory

11D. Koop, CSCI 503/490, Spring 2022

https://tiger.cs.niu.edu/jupyter/

Assignment 1
• Due next Monday
• Get acquainted with Python using notebooks
• Make sure to follow instructions
- Name the submitted file a1.ipynb
- Put your name and z-id in the first cell
- Label each part of the assignment using markdown
- Make sure to produce output according to specifications

12D. Koop, CSCI 503/490, Spring 2022

http://faculty.cs.niu.edu/~dakoop/cs503-2022sp/assignment1.html

13

Programming Principles

D. Koop, CSCI 503/490, Spring 2022

Zen of Python
• Written in 1999 by T. Peters in a message to Python mailing list
• Attempt to channel Guido van Rossum's design principles
• 20 aphorisms, 19 written, 1 left for Guido to complete (never done)
• Archived as PEP 20
• Added as an easter egg to python (import this)
• Much to be deciphered, in no way a legal document
• Jokes embedded
• Commentary by A.-R. Janhangeer

14D. Koop, CSCI 503/490, Spring 2022

https://www.python.org/dev/peps/pep-0020/
https://www.codementor.io/@abdurrahmaanj/the-zen-of-python-as-related-by-masters-1adi3kuiwy

Zen of Python
>>> import this

1. Beautiful is better than ugly.
2. Explicit is better than implicit.
3. Simple is better than complex.
4. Complex is better than complicated.
5. Flat is better than nested.
6. Sparse is better than dense.
7. Readability counts.
8. Special cases aren't special enough to break the rules.
9. Although practicality beats purity.

15D. Koop, CSCI 503/490, Spring 2022

Zen of Python
10. Errors should never pass silently.
11. Unless explicitly silenced.
12. In the face of ambiguity, refuse the temptation to guess.
13. There should be one-- and preferably only one --obvious way to do it.
14. Although that way may not be obvious at first unless you're Dutch.
15. Now is better than never.
16. Although never is often better than right now.
17. If the implementation is hard to explain, it's a bad idea.
18. If the implementation is easy to explain, it may be a good idea.
19. Namespaces are one honking great idea—let's do more of those!

16D. Koop, CSCI 503/490, Spring 2022

Explicit Code
• Goes along with complexity
• Bad:

def make_complex(*args):
 x, y = args
 return dict(**locals())

• Good
def make_complex(x, y):
 return {'x': x, 'y': y}

17

[The Hitchhiker's Guide to Python]
D. Koop, CSCI 503/490, Spring 2022

https://docs.python-guide.org/writing/style/#zen-of-python

Avoid the Magical Wand
• You can change almost anything Python does
- Modify almost any core function
- Change how objects are created/instantiated
- Change how modules are imported

• Good because no problem is impossible
• But know when not to use extraordinary measures

18

[The Hitchhiker's Guide to Python]
D. Koop, CSCI 503/490, Spring 2022

https://docs.python-guide.org/writing/style/#zen-of-python

One Statement per Line
• Bad:

- print('one'); print('two')

- if <complex comparison> and <other complex comparison>:
 # do something

• Good:
- print('one')
print('two')

- cond1 = <complex comparison>
cond2 = <other complex comparison>
if cond1 and cond2:
 # do something

19

[The Hitchhiker's Guide to Python]
D. Koop, CSCI 503/490, Spring 2022

https://docs.python-guide.org/writing/style/#zen-of-python

Don't Repeat Yourself
• "Two or more, use a for" [Dijkstra]
• Rule of Three: [Roberts]
- Don't copy-and-paste more than once
- Refactor into methods

• Repeated code is harder to maintain
• Bad

f1 = load_file('f1.dat')
r1 = get_cost(f1)
f2 = load_file('f2.dat')
r2 = get_cost(f2)
f3 = load_file('f3.dat')
r3 = get_cost(f3)

20D. Koop, CSCI 503/490, Spring 2022

• Good
for i in range(1,4):
 f = load_file(f'f{i}.dat')
 r = get_cost(f)

Defensive Programming
• Consider corner cases
• Make code auditable
• Process exceptions
• Bad

- def f(i):
 return 100 / i

• Good:
- def f(i):
 if i == 0:
 return 0
 return 100/i

21D. Koop, CSCI 503/490, Spring 2022

Object-Oriented Programming
• ?

22D. Koop, CSCI 503/490, Spring 2022

Object-Oriented Programming
• Encapsulation (Cohesion): Put things together than go together
• Abstraction: Hide implementation details (API)
• Inheritance: Reuse existing work
• Polymorphism: Method reuse and strategies for calling and overloading

23D. Koop, CSCI 503/490, Spring 2022

24

Programming Requires Practice

D. Koop, CSCI 503/490, Spring 2022

Modes of Computation
• Python is interpreted: you can run one line at a line without compiling
• Interpreter in the Shell
- Execute line by line
- Hard to structure loops
- Usually execute whole files (called scripts) and edit those files

• Notebook
- Richer results (e.g. images, tables)
- Can more easily edit past code
- Re-execute any cell, whenever

25D. Koop, CSCI 503/490, Spring 2022

Python Interpreter from the Shell
• On tiger, use conda init to make sure you are using the latest version of

python (the same version used by the notebook environment)
• We will discuss this more later, but want to show how this works

26D. Koop, CSCI 503/490, Spring 2022

Python in a Notebook
• Richer results (e.g. images, tables)
• Can more easily edit past code
• Re-execute any cell, whenever

27D. Koop, CSCI 503/490, Spring 2022

Multiple Types of Output
• stdout: where print commands go
• stderr: where error messages go
• display: special output channel used to show rich outputs
• output: same as display but used to display the value of the last line of a cell

28D. Koop, CSCI 503/490, Spring 2022

Print function
•print(“Welcome, Jane")

• Can also print variables:
name = "Jane"
print("Welcome,", name)

29D. Koop, CSCI 503/490, Spring 2022

Python Variables and Types
• No type declaration necessary
• Variables are names, not memory locations

a = 0
a = "abc"
a = 3.14159

• Don't worry about types, but think about types
• Strings are a type
• Integers are as big as you want them
• Floats can hold large numbers, too (double-precision)

30D. Koop, CSCI 503/490, Spring 2022

Python Strings
• Strings can be delimited by single or double quotes

- "abc" and 'abc' are exactly the same thing
- Easier use of quotes in strings: "Joe's" or 'He said "Stop!"'

• Triple quotes allow content to go across lines and preserves linebreaks
- """This is another
string"""

• String concatenation: "abc" + "def"
• Repetition: "abc" * 3
• Special characters: \n \t like Java/C++

31D. Koop, CSCI 503/490, Spring 2022

Python Math and String "Math"
• Standard Operators: +, -, *, /, %
• Division "does what you want" (new in v3)
- 5 / 2 = 2.5
- 5 // 2 = 2 # use // for integer division

• Shortcuts: +=, -=, *=
• No ++, --
• Exponentiation (Power): **
• Order of operations and parentheses: (4 - 3 - 1 vs. 4 - (3 - 1))
• "abc" + "def"

• "abc" * 3

32D. Koop, CSCI 503/490, Spring 2022

JupyterLab Notebook Tips
• Starts with a directory view
• Create new notebooks using the Launcher (+ icon on the left)
- New notebooks have the name "Untitled"
- File → Rename Notebook… (or right-click) to change the name

• Save a notebook using the command under the File menu
• Shutting down the notebook requires quitting the kernel
- Web browser is interface to display code and results
- Kernel runs the code: may see messages in a console/terminal window
- Closing the browser window does not stop Jupyter
- Use File → Shut Down to shut down everything

33D. Koop, CSCI 680/490, Spring 2022

JupyterLab Notebooks
• Open a notebook using the left panel like you would in a desktop view
• Past results are displayed—does not mean they are loaded in memory
• Use "Run All" or "Run All Above" to re-execute past work
- If you shut down the kernel, all of the data and variables you defined need

to be redefined (so you need to re-run all)
- Watch Out—Order Matters: If you went back and re-executed cells in a

different order than they are shown, doing "Run All" may not produce the
same results!

• Edit mode (green) versus Command mode (blue == Be Careful)

34D. Koop, CSCI 680/490, Spring 2022

JupyterLab Notebooks
• Can write code or plain text (can be styled Markdown)
- Choose the type of cell using the dropdown menu

• Cells break up your code, but all data is global
- Defining a variable a in one cell means it is available in any other cell
- This includes cells above the cell a was defined in!

• Remember Shift+Enter to execute
• Enter just adds a new line
• Use ?<function_name> for help
• Use Tab for auto-complete or suggestions
• Tab also indents, and Shift+Tab unindents

35D. Koop, CSCI 680/490, Spring 2022

JupyterLab Notebooks
• You can interrupt the kernel or restart if things seem stuck
• You can download your notebooks if working remotely
• Common Keyboard Shortcuts

36D. Koop, CSCI 503/490, Spring 2022

https://gist.github.com/discdiver/9e00618756d120a8c9fa344ac1c375ac

