
Programming Principles in Python (CSCI 503/490)

Review

Dr. David Koop

D. Koop, CSCI 503/490, Fall 2022

Tasks Machine Learning can Help With
• Identifying the zip code from handwritten digits on an envelope

• Detecting fraudulent activity in credit card transactions
• Identifying topics in a set of blog posts
• Grouping customers with similar preferences

2

[A. Müller & S. Guido, Introduction to Machine Learning with Python, J. Steppan (MNIST image)]
D. Koop, CSCI 503/490, Fall 2022

Machine Learning
• Traditional Programming

• Machine Learning

3

[P. Domingos]
D. Koop, CSCI 503/490, Fall 2022

Computer
Data

Program
Output

Computer
Data

Output
Program

Types of Learning
• Supervised (inductive) learning
- Training data includes desired outputs

• Unsupervised learning
- Training data does not include desired outputs

• Semi-supervised learning
- Training data includes a few desired outputs

• Reinforcement learning
- Rewards from sequence of actions

4

[P. Domingos]
D. Koop, CSCI 503/490, Fall 2022

Supervised Learning

5

[J. VanderPlas]
D. Koop, CSCI 503/490, Fall 2022

https://jakevdp.github.io/PythonDataScienceHandbook/06.00-figure-code.html

Supervised Learning: Learned Algorithm (Fit)

6

[J. VanderPlas]
D. Koop, CSCI 503/490, Fall 2022

https://jakevdp.github.io/PythonDataScienceHandbook/06.00-figure-code.html

Supervised Learning: Prediction

7

[J. VanderPlas]
D. Koop, CSCI 503/490, Fall 2022

https://jakevdp.github.io/PythonDataScienceHandbook/06.00-figure-code.html

Supervised Learning: Prediction

8

[J. VanderPlas]
D. Koop, CSCI 503/490, Fall 2022

https://jakevdp.github.io/PythonDataScienceHandbook/06.00-figure-code.html

Unsupervised Learning: Input

9

[J. VanderPlas]
D. Koop, CSCI 503/490, Fall 2022

https://jakevdp.github.io/PythonDataScienceHandbook/06.00-figure-code.html

Unsupervised Learning: Output

10

[J. VanderPlas]
D. Koop, CSCI 503/490, Fall 2022

https://jakevdp.github.io/PythonDataScienceHandbook/06.00-figure-code.html

scikit-learn entities
• Data: numpy matrices (also pandas series, data frames), process batches
• Estimator: all supervised & unsupervised algs implement common interface
- estimator initialization does not do learning, only attaches parameters
- fit does the learning, learned parameters exposed with trailing underscore

• Predictor: extends estimator with predict method
- also provides score method to return value indicating prediction quality

• Transformer: help modify or filter data before learning
- Preprocessing, feature selection, feature extraction, and dimensionality

reduction vis transform method
- Can combine fit and transform via fit_transform

11

[L. Buitinck et al.]
D. Koop, CSCI 503/490, Fall 2022

scikit-learn Template
1. Choose model class
2. Instantiate model
3. Fit model to data
4. Predict on new data

from sklearn.naive_bayes import GaussianNB
model = GaussianNB()
model.fit(Xtrain, ytrain)
y_model = model.predict(Xtest)

5. (Check accuracy)
from sklearn.metrics import accuracy_score
accuracy_score(ytest, y_model)

12D. Koop, CSCI 503/490, Fall 2022

Deep Learning
• Deep learning is tied to neural networks, attempting to mimic how human

neurons work together
• Hierarchical with multiple layers
• Usually takes advantage of GPUs
• Frameworks:
- pytorch
- TensorFlow
- keras
- theano

13D. Koop, CSCI 503/490, Fall 2022

Assignment 8
• Due Friday
• Data and Visualization
• Port of Entry Data
• Part 1a: Month includes Year—the whole Data column (e.g. Jan 2022)

14D. Koop, CSCI 503/490, Fall 2022

https://faculty.cs.niu.edu/~dakoop/cs503-2022fa/assignment8.html

Final Exam
• Tuesday, December 6, 12:00-1:50pm in PM 253
• More comprehensive than Test 2
• Expect questions from topics covered on Test 1 and 2
• Expect questions from the last four weeks of class (data, visualization,

machine learning)
• Similar format

15D. Koop, CSCI 503/490, Fall 2022

http://faculty.cs.niu.edu/~dakoop/cs503-2022fa/final.html

16

Questions?

D. Koop, CSCI 503/490, Fall 2022

Why Python?
• High-level, readable
• Productivity
• Large standard library
• Libraries, Libraries, Libraries
• What about Speed?
- What speed are we measuring?
- Time to code vs. time to execute

17D. Koop, CSCI 503/490, Fall 2022

JupyterLab and Jupyter Notebooks

18

[JupyterLab Documentation]
D. Koop, CSCI 503/490, Fall 2022

https://jupyterlab.readthedocs.io/en/stable/getting_started/overview.html

Principles: Explicit Code
• Complex code isn't necessarily bad, but make sure you can't make it clearer
• Bad:

def make_complex(*args):
 x, y = args
 return dict(**locals())

• Good
def make_complex(x, y):
 return {'x': x, 'y': y}

19

[The Hitchhiker's Guide to Python]
D. Koop, CSCI 503/490, Fall 2022

https://docs.python-guide.org/writing/style/#zen-of-python

Principles: Don't Repeat Yourself
• "Two or more, use a for" [Dijkstra]
• Rule of Three: [Roberts]
- Don't copy-and-paste more than once
- Refactor into methods

• Repeated code is harder to maintain
• Bad

f1 = load_file('f1.dat')
r1 = get_cost(f1)
f2 = load_file('f2.dat')
r2 = get_cost(f2)
f3 = load_file('f3.dat')
r3 = get_cost(f3)

20D. Koop, CSCI 503/490, Fall 2022

• Good
for i in range(1,4):
 f = load_file(f'f{i}.dat')
 r = get_cost(f)

Expression Rules
• Involve
- Literals (1, "abc"),
- Variables (a, my_height), and
- Operators (+,-*,/,//,**)

• Spaces are irrelevant within an expression
- a + 34 # ok

• Standard precedence rules
- Parentheses, exponentiation, mult/div, add/sub
- Left to right at each level

• Also boolean expressions

21D. Koop, CSCI 503/490, Fall 2022

Identifiers
• A sequence of letters, digits, or underscores, but…
• Also includes unicode "letters", spacing marks, and decimals (e.g. Σ)
• Must begin with a letter or underscore (_)
• Why not a number?
• Case sensitive (a is different from A)
• Conventions:
- Identifiers beginning with an underscore (_) are reserved for system use
- Use underscores (a_long_variable), not camel-case (aLongVariable)
- Keep identifier names less than 80 characters

• Cannot be reserved words

22D. Koop, CSCI 503/490, Fall 2022

Types
• Don't worry about types, but think about types
• Variables can "change types"

- a = 0
a = "abc"
a = 3.14159

• Actually, the name is being moved to a different value
• You can find out the type of the value stored at a variable v using type(v)
• Some literal types are determined by subtle differences

- 1 vs 1. (integer vs. float)
- 1.43 vs 1.43j (float vs. imaginary)
- '234' vs b'234' (string vs. byte string)

23D. Koop, CSCI 503/490, Fall 2022

Assignment
• The = operator: a = 34; c = (a + b) ** 2
• Python variables are actually pointers to objects
• Also, augmented assignment: +=, -=, *=, /=, //=, **=

24D. Koop, CSCI 503/490, Fall 2022

x 42

x 42

43

y

x = 42 x = x + 1
y = x

Boolean Expressions
• Type bool: True or False
• Note capitalization!
• Comparison Operators: <, <=, >, >=, ==, !=
- Double equals (==) checks for equal values,
- Assignment (=) assigns values to variables

• Boolean operators: not, and, or
- Different from many other languages (!, &&, ||)

• More:
- is: exact same object (usually a_variable is None)
- in: checks if a value is in a collection (34 in my_list)

25D. Koop, CSCI 503/490, Fall 2022

if, else, elif, pass
• if a < 10:
 print("Small")
else:
 if a < 100:
 print("Medium")
 else:
 if a < 1000:
 print("Large")
 else:
 print("X-Large")

• if a < 10:
 print("Small")
elif a < 100:
 print("Medium")
elif a < 1000:
 print("Large")
else:
 print("X-Large")

26D. Koop, CSCI 503/490, Fall 2022

• Indentation is critical so else-if branches can become unwieldy (elif helps)
• Remember colons and indentation
• pass can be used for an empty block

Loop Styles
• Loop-and-a-Half
d = get_data() # priming rd
while check(d):
 # do stuff
 d = get_data()

• Infinite-Loop-Break
while True:
 d = get_data()
 if check(d):
 break
 # do stuff

• Assignment Expression (Walrus)
while check(d := get_data):
 # do stuff

27D. Koop, CSCI 503/490, Fall 2022

Functions
• Use return to return a value
• def <function-name>(<parameter-names>):
 # do stuff
 return res

• Can return more than one value using commas
• def <function-name>(<parameter-names>):
 # do stuff
 return res1, res2

• Use simultaneous assignment when calling:
- a, b = do_something(1,2,5)

• If there is no return value, the function returns None (a special value)

28D. Koop, CSCI 503/490, Fall 2022

Positional & Keyword Arguments
• Generally, any argument can be passed as a keyword argument
• def f(alpha, beta, gamma=1, delta=7, epsilon=8, zeta=2,
 eta=0.3, theta=0.5, iota=0.24, kappa=0.134):
 # …

• f(5,6)

• f(alpha=7, beta=12, iota=0.7)

29D. Koop, CSCI 503/490, Fall 2022

Pass by object reference
• AKA passing object references by value
• Python doesn't allocate space for a variable, it just links identifier to a value
• Mutability of the object determines whether other references see the change
• Any immutable object will act like pass by value
• Any mutable object acts like pass by reference unless it is reassigned to a

new value

30D. Koop, CSCI 503/490, Fall 2022

Sequences
• Strings "abcde", Lists [1, 2, 3, 4, 5], and Tuples (1, 2, 3, 4, 5)

• Defining a list: my_list = [0, 1, 2, 3, 4]
• But lists can store different types:

- my_list = [0, "a", 1.34]
• Including other lists:

- my_list = [0, "a", 1.34, [1, 2, 3]]

• Others are similar: tuples use parenthesis, strings are delineated by quotes
(single or double)

31D. Koop, CSCI 503/490, Fall 2022

Indexing & Slicing
• Positive or negative indices can be used at any step
• my_str = "abcde"; my_str[1] + my_str[-4]# "bb"

• my_list = [1,2,3,4,5]; my_list[3:-1] # [4]

• Implicit indices
- my_tuple = (1,2,3,4,5); my_tuple[-2:] # (4,5)

- my_tuple[:3] # (1,2,3)

32D. Koop, CSCI 503/490, Fall 2022

[1:3] a b c d e

0 1 2 3 4

-5 -4 -3 -2 -1

[-4:-2]

Tuples
• Tuples are immutable sequences
• We've actually seen tuples a few times already
- Simultaneous Assignment
- Returning Multiple Values from a Function

• Python allows us to omit parentheses when it's clear
- b, a = a, b # same as (b, a) = (a, b)

- t1 = a, b # don't normally do this

- c, d = f(2, 5, 8) # same as (c, d) = f(2, 5, 8)

- t2 = f(2, 5, 8) # don't normally do this

33D. Koop, CSCI 503/490, Fall 2022

Dictionary
• AKA associative array or map
• Collection of key-value pairs
- Keys must be unique
- Values need not be unique

• Syntax:
- Curly brackets {} delineate start and end
- Colons separate keys from values, commas separate pairs
- d = {'DeKalb': 783, 'Kane': 134, 'Cook': 1274, 'Will': 546}

• No type constraints
- d = {'abc': 25, 12: 'abc', ('Kane', 'IL'): 123.54}

34D. Koop, CSCI 503/490, Fall 2022

Collections
• A dictionary is not a sequence
• Sequences are ordered
• Conceptually, dictionaries need no order
• A dictionary is a collection
• Sequences are also collections
• All collections have length (len), membership (in), and iteration (loop over values)
• Length for dictionaries counts number of key-value pairs
- Pass dictionary to the len function
- d = {'abc': 25, 12: 'abc', ('Kane', 'IL'): 123.54}
len(d) # 3

35D. Koop, CSCI 503/490, Fall 2022

List Comprehension
• output = []
for d in range(5):
 output.append(d ** 2 - 1)

• Rewrite as a map:
- output = [d ** 2 - 1 for d in range(5)]

• Can also filter:
- output = [d for d in range(5) if d % 2 == 1]

• Combine map & filter:
- output = [d ** 2 - 1 for d in range(5) if d % 2 == 1]

36D. Koop, CSCI 503/490, Fall 2022

Short-Circuit Evaluation
• Automatic, works left to right according to order of operations (and before or)
• Works for and and or
• and:
- if any value is False, stop and return False
- a, b = 2, 3
a > 3 and b < 5

• or:
- if any value is True, stop and return True
- a, b, c = 2, 3, 7
a > 3 or b < 5 or c > 8

37D. Koop, CSCI 503/490, Fall 2022

Strings
• Remember strings are sequences of characters
• Strings are collections so have len, in, and iteration

- s = "Huskies"
len(s); "usk" in s; [c for c in s if c == 's']

• Strings are sequences so have
- indexing and slicing: s[0], s[1:]
- concatenation and repetition: s + " at NIU"; s * 2

• Single or double quotes 'string1', "string2"
• Triple double-quotes: """A string over many lines"""
• Escaped characters: '\n' (newline) '\t' (tab)

38D. Koop, CSCI 503/490, Fall 2022

Regular Expressions
• AKA regex
• A syntax to better specify how to decompose strings
• Look for patterns rather than specific characters
• "31" in "The last day of December is 12/31/2016."

• May work for some questions but now suppose I have other lines like: "The
last day of September is 9/30/2016."

• …and I want to find dates that look like:
• {digits}/{digits}/{digits}

• Cannot search for every combination!
• \d+/\d+/\d+ # \d is a character class

39D. Koop, CSCI 503/490, Fall 2022

Reading & Writing Files
• Can iterate through the file (think of the file as a collection of lines):

- f = open('huck-finn.txt', 'r')
for line in f:
 if 'Huckleberry' in line:
 print(line.strip())

• For writing, with statement does "enter" and "exit": don't need to call
outf.close()

- with open('output.txt', 'w') as outf:
 for k, v in counts.items():
 outf.write(k + ': ' + v + '\n')

40D. Koop, CSCI 503/490, Fall 2022

Command Line Interfaces (CLIs)
• Prompt:
- $
-

• Commands
- $ cat <filename>

- $ git init

• Arguments/Flags: (options)
- $ python -h

- $ head -n 5 <filename>

- $ git branch fix-parsing-bug

41D. Koop, CSCI 503/490, Fall 2022

Modules and Packages
• Python allows you to import code from other files, even your own
• A module is a collection of definitions
• A package is an organized collection of modules
• Modules can be
- a separate python file
- a separate C library that is written to be used with Python
- a built-in module contained in the interpreter
- a module installed by the user (via conda or pip)

• All types use the same import syntax

42

[RealPython]
D. Koop, CSCI 503/490, Fall 2022

https://realpython.com/python-modules-packages/

Namespaces
• Namespace is basically a dictionary with

names and their values
• Accessing namespaces

- __builtins__, globals(), locals()
• Examine contents of a namespace:
dir(<namespace>)

• Python checks for a name in the sequence:
local, enclosing, global, builtins

• To access names in outer scopes, use
global (global) and nonlocal (enclosing)
declarations

43

[RealPython]
D. Koop, CSCI 503/490, Fall 2022

https://realpython.com/python-namespaces-scope/

Object-Oriented Programming Concepts
• Abstraction: simplify, hide implementation details, don't repeat yourself
• Encapsulation: represent an entity fully, keep attributes and methods together
• Inheritance: reuse (don't reinvent the wheel), specialization
• Polymorphism: methods are handled by a single interface with different

implementations (overriding)

44D. Koop, CSCI 503/490, Fall 2022

Classes and Instances in Python
• Class Definition:

- class Vehicle:
 def __init__(self, make, model, year, color):
 self.make = make
 self.model = model
 self.year = year
 self.color = color

 def age(self):
 return 2021 - self.year

• Instances:
- car1 = Vehicle('Toyota', 'Camry', 2000, 'red')

- car2 = Vehicle('Dodge', 'Caravan', 2015, 'gray')

45D. Koop, CSCI 503/490, Fall 2022

Subclass
• Just put superclass(-es) in parentheses after the class declaration
• class Car(Vehicle):
 def __init__(self, make, model, year, color, num_doors):
 super().__init__(make, model, year, color)
 self.num_doors = num_doors

 def open_door(self):
 …

• super() is a special method that locates the base class
- Constructor should call superclass constructor
- Extra arguments should be initialized and extra instance methods

46D. Koop, CSCI 503/490, Fall 2022

Typing
• Dynamic Typing: variable's type can change (what Python does)
• Static Typing: compiler enforces types, variable types generally don't change
• Duck Typing: check method/attribute existence, not type
• Python is a dynamically-typed language (and plans to remain so)
• …but it has recently added more support for type hinting/annotations that

allow static type checking
• Type annotations change nothing at runtime!

47

[RealPython, G. A. Hjelle]
D. Koop, CSCI 503/490, Fall 2022

https://realpython.com/python-type-checking/

Dealing with Errors
• Can explicitly check for errors at each step
- Check for division by zero
- Check for invalid parameter value (e.g. string instead of int)

• Sometimes all of this gets in the way and can't be addressed succinctly
- Too many potential errors to check
- Cannot handle groups of the same type of errors together

• Allow programmer to determine when and how to handle issues
- Allow things to go wrong and handle them instead
- Allow errors to be propagated and addressed once

48D. Koop, CSCI 503/490, Fall 2022

Try, Except, Else, and Finally
• b = 3
a = 0
try:
 c = b / a
except ZeroDivisionError:
 print("Division failed")
 c = 0
else:
 print("Division succeeded", c)
finally:
 print("This always runs")

49D. Koop, CSCI 503/490, Fall 2022

Debugging
• print statements
• logging library
• pdb
• Extensions for IDEs (e.g. PyCharm)
• JupyterLab Debugger Support

50D. Koop, CSCI 503/490, Fall 2022

https://jupyterlab.readthedocs.io/en/stable/user/debugger.html

Testing
• If statements
• Assert statements
• Unit Testing
• Integration Testing

51D. Koop, CSCI 503/490, Fall 2022

Python Modules for Working with the Filesystem
• In general, cross-platform! (Linux, Mac, Windows)
• os: translations of operating system commands
• shutil: better support for file and directory management
• fnmatch, glob: match filenames, paths
• os.path: path manipulations
• pathlib: object-oriented approach to path manipulations, also includes

some support for matching paths

52D. Koop, CSCI 503/490, Fall 2022

Concurrency: CPU-Bound vs. I/O-Bound

53

[J. Anderson]
D. Koop, CSCI 503/490, Fall 2022

https://realpython.com/python-concurrency

Data Frame

54D. Koop, CSCI 503/490, Fall 2022

Data Frame

54D. Koop, CSCI 503/490, Fall 2022

Column Names

Data Frame

54D. Koop, CSCI 503/490, Fall 2022

Column Names

Index

Data Frame

54D. Koop, CSCI 503/490, Fall 2022

Column Names

Index

Column: df['Island']

Data Frame

54D. Koop, CSCI 503/490, Fall 2022

Column Names

Index

Column: df['Island']

Row: df.loc[2]

Data Frame

54D. Koop, CSCI 503/490, Fall 2022

Column Names

Index

Column: df['Island']

Cell: df.loc[341,'Species']

Row: df.loc[2]

Data Frame

54D. Koop, CSCI 503/490, Fall 2022

Column Names

Index

Column: df['Island']

Cell: df.loc[341,'Species']

Missing Data

Row: df.loc[2]

Array Operations
• a = np.array([1,2,3])
b = np.array([6,4,3])

• (Array, Array) Operations (Element-wise)
- Addition, Subtraction, Multiplication
- a + b # array([7, 6, 6])

• (Scalar, Array) Operations (Broadcasting):
- Addition, Subtraction, Multiplication, Division, Exponentiation
- a ** 2 # array([1, 4, 9])

- b + 3 # array([9, 7, 6])

55D. Koop, CSCI 503/490, Fall 2022

Array Slicing
• 2D+: comma separated indices as shorthand:

- arr2 = np.array([[1.5,2,3,4],[5,6,7,8]])

- a[1:2,1:3]

- a[1:2,:] # works like in single-dimensional lists

• Can combine index and slice in different dimensions
- a[1,:] # gives a row

- a[:,1] # gives a column

• Slicing vs. indexing produces different shapes!
- a[1,:] # 1-dimensional

- a[1:2,:] # 2-dimensional

56D. Koop, CSCI 503/490, Fall 2022

Aggregation of time series data, a special use case of groupby, is referred
to as resampling in this book and will receive separate treatment in
Chapter 10.

GroupBy Mechanics
Hadley Wickham, an author of many popular packages for the R programming lan-
guage, coined the term split-apply-combine for talking about group operations, and I
think that’s a good description of the process. In the first stage of the process, data
contained in a pandas object, whether a Series, DataFrame, or otherwise, is split into
groups based on one or more keys that you provide. The splitting is performed on a
particular axis of an object. For example, a DataFrame can be grouped on its rows
(axis=0) or its columns (axis=1). Once this is done, a function is applied to each group,
producing a new value. Finally, the results of all those function applications are com-
bined into a result object. The form of the resulting object will usually depend on what’s
being done to the data. See Figure 9-1 for a mockup of a simple group aggregation.

Figure 9-1. Illustration of a group aggregation

Each grouping key can take many forms, and the keys do not have to be all of the same
type:

• A list or array of values that is the same length as the axis being grouped

• A value indicating a column name in a DataFrame

250 | Chapter 9: Data Aggregation and Group Operations

Aggregation: Split-Apply-Combine

57

[W. McKinney, Python for Data Analysis]
D. Koop, CSCI 503/490, Fall 2022

Tidy Data: Melt
• Want to keep each observation separate (tidy), aka pivot_longer

58

[AB Abhi]
D. Koop, CSCI 503/490, Fall 2022

df.melt(id_vars=["location", "Temperature"],
 var_name="Date", value_name="Value")

https://www.codementor.io/@abhishake/reshaping-pandas-data-with-melt-lazg3j4te

Tidy Data: Pivot
• Sometimes, we have data that is given in "long" format and we would like

"wide" format (aka pivot_wider)
• Long format: column names are data values…
• Wide format: more like spreadsheet format
• Example:

59

[W. McKinney, Python for Data Analysis]
D. Koop, CSCI 503/490, Fall 2022

 two 1 6
 three 2 7
Colorado one 3 8
 two 4 9
 three 5 10

In [109]: df.unstack('state') In [110]: df.unstack('state').stack('side')
Out[109]: Out[110]:
side left right state Ohio Colorado
state Ohio Colorado Ohio Colorado number side
number one left 0 3
one 0 3 5 8 right 5 8
two 1 4 6 9 two left 1 4
three 2 5 7 10 right 6 9
 three left 2 5
 right 7 10

Pivoting “long” to “wide” Format
A common way to store multiple time series in databases and CSV is in so-called long
or stacked format:

data = pd.read_csv('ch07/macrodata.csv')
periods = pd.PeriodIndex(year=data.year, quarter=data.quarter, name='date')
data = DataFrame(data.to_records(),
 columns=pd.Index(['realgdp', 'infl', 'unemp'], name='item'),
 index=periods.to_timestamp('D', 'end'))

ldata = data.stack().reset_index().rename(columns={0: 'value'})

In [116]: ldata[:10]
Out[116]:
 date item value
0 1959-03-31 realgdp 2710.349
1 1959-03-31 infl 0.000
2 1959-03-31 unemp 5.800
3 1959-06-30 realgdp 2778.801
4 1959-06-30 infl 2.340
5 1959-06-30 unemp 5.100
6 1959-09-30 realgdp 2775.488
7 1959-09-30 infl 2.740
8 1959-09-30 unemp 5.300
9 1959-12-31 realgdp 2785.204

Data is frequently stored this way in relational databases like MySQL as a fixed schema
(column names and data types) allows the number of distinct values in the item column
to increase or decrease as data is added or deleted in the table. In the above example
date and item would usually be the primary keys (in relational database parlance),
offering both relational integrity and easier joins and programmatic queries in many
cases. The downside, of course, is that the data may not be easy to work with in long
format; you might prefer to have a DataFrame containing one column per distinct

190 | Chapter 7: Data Wrangling: Clean, Transform, Merge, Reshape

item value indexed by timestamps in the date column. DataFrame’s pivot method per-
forms exactly this transformation:

In [117]: pivoted = ldata.pivot('date', 'item', 'value')

In [118]: pivoted.head()
Out[118]:
item infl realgdp unemp
date
1959-03-31 0.00 2710.349 5.8
1959-06-30 2.34 2778.801 5.1
1959-09-30 2.74 2775.488 5.3
1959-12-31 0.27 2785.204 5.6
1960-03-31 2.31 2847.699 5.2

The first two values passed are the columns to be used as the row and column index,
and finally an optional value column to fill the DataFrame. Suppose you had two value
columns that you wanted to reshape simultaneously:

In [119]: ldata['value2'] = np.random.randn(len(ldata))

In [120]: ldata[:10]
Out[120]:
 date item value value2
0 1959-03-31 realgdp 2710.349 1.669025
1 1959-03-31 infl 0.000 -0.438570
2 1959-03-31 unemp 5.800 -0.539741
3 1959-06-30 realgdp 2778.801 0.476985
4 1959-06-30 infl 2.340 3.248944
5 1959-06-30 unemp 5.100 -1.021228
6 1959-09-30 realgdp 2775.488 -0.577087
7 1959-09-30 infl 2.740 0.124121
8 1959-09-30 unemp 5.300 0.302614
9 1959-12-31 realgdp 2785.204 0.523772

By omitting the last argument, you obtain a DataFrame with hierarchical columns:

In [121]: pivoted = ldata.pivot('date', 'item')

In [122]: pivoted[:5]
Out[122]:
 value value2
item infl realgdp unemp infl realgdp unemp
date
1959-03-31 0.00 2710.349 5.8 -0.438570 1.669025 -0.539741
1959-06-30 2.34 2778.801 5.1 3.248944 0.476985 -1.021228
1959-09-30 2.74 2775.488 5.3 0.124121 -0.577087 0.302614
1959-12-31 0.27 2785.204 5.6 0.000940 0.523772 1.343810
1960-03-31 2.31 2847.699 5.2 -0.831154 -0.713544 -2.370232

In [123]: pivoted['value'][:5]
Out[123]:
item infl realgdp unemp
date
1959-03-31 0.00 2710.349 5.8
1959-06-30 2.34 2778.801 5.1

Reshaping and Pivoting | 191

.pivot('date', 'item', 'value')

●

●
●

●
●

●

●

●

●

●
●

4 6 8 10 12 14 16 18

4

6

8

10

12

x1

y 1

●
●

●●
●

●

●

●

●

●

●

4 6 8 10 12 14 16 18

4

6

8

10

12

x2

y 2

●
●

●

●
●

●

●
●

●

●
●

4 6 8 10 12 14 16 18

4

6

8

10

12

x3

y 3

●
●

●

●●

●

●

●

●

●

●

4 6 8 10 12 14 16 18

4

6

8

10

12

x4

y 4

Visualizing Data

60

[F. J. Anscombe]
D. Koop, CSCI 503/490, Fall 2022

●

●
●

●
●

●

●

●

●

●
●

4 6 8 10 12 14 16 18

4

6

8

10

12

x1

y 1

●
●

●●
●

●

●

●

●

●

●

4 6 8 10 12 14 16 18

4

6

8

10

12

x2

y 2

●
●

●

●
●

●

●
●

●

●
●

4 6 8 10 12 14 16 18

4

6

8

10

12

x3

y 3

●
●

●

●●

●

●

●

●

●

●

4 6 8 10 12 14 16 18

4

6

8

10

12

x4

y 4

Visualizing Data

60

[F. J. Anscombe]
D. Koop, CSCI 503/490, Fall 2022

Mean of x 9

Variance of x 11

Mean of y 7.50

Variance of y 4.122

Correlation 0.816

matplotlib
• Strengths:
- Designed like Matlab
- Many rendering backends
- Can reproduce almost any plot
- Proven, well-tested

• Weaknesses:
- API is imperative
- Not originally designed for the web
- Dated styles

61D. Koop, CSCI 503/490, Fall 2022

G
la

br
on

M
an

ch
ur

ia

N
o.

 4
57

N
o.

 4
62

N
o.

 4
75

Pe
at

la
nd

Sv
an

so
ta

Tr
eb

i

Ve
lv

et

W
is

co
ns

in
 N

o.
 3

8

variety

0

50

100

150

200

250

300

350

400

450

500

Su
m

 o
f y

ie
ld

Crookston
Duluth
Grand Rapids
Morris
University Farm
Waseca

site

Altair
• Declarative Visualization
- Specify what instead of how
- Separate specification from execution

• Based on VegaLite which is browser-based
• Strengths:
- Declarative visualization
- Web technologies

• Drawbacks:
- Moving data between Python and JS
- Sometimes longer specifications

62D. Koop, CSCI 503/490, Fall 2022

Visual Marks
• Marks are the basic graphical elements in a visualization
• Marks classified by dimensionality:

• Also can have surfaces, volumes
• Think of marks as a mathematical definition, or if familiar with tools like Adobe

Illustrator or Inkscape, the path & point definitions
• Altair: area, bar, circle, geoshape, image, line, point, rect, rule, square, text, tick
- Also compound marks: boxplot, errorband, errorbar

63D. Koop, CSCI 503/490, Fall 2022

Points Lines Areas

Horizontal

Position

Vertical Both

Color

Shape Tilt

Size

Length Area Volume

Data is Encoded via Visual Channels

64

[Munzner (ill. Maguire), 2014]
D. Koop, CSCI 503/490, Fall 2022

Multiple Views

65

[Improvise, Weaver, 2004]
D. Koop, CSCI 503/490, Fall 2022

Jan 01Feb 01 Mar 01 Apr 01 May 01 Jun 01 Jul 01 Aug 01 Sep 01 Oct 01 Nov 01 Dec 01
Date

−5

0

5

10

15

20

25

30

35

40

M
ax

im
um

 D
ai

ly
 T

em
pe

ra
tu

re
 (C

)

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800
Count of Records

drizzle

fog

rain

snow

sun

w
ea

th
er

sun
fog
drizzle
rain
snow

weather

0
10
20
30
40

50

precipitation

Seattle Weather: 2012-2015

Interaction

66D. Koop, CSCI 503/490, Fall 2022

67

Questions?

D. Koop, CSCI 503/490, Fall 2022

Final Exam
• Tuesday, December 6, 12:00-1:50pm in PM 253
• More comprehensive than Test 2
• Expect questions from topics covered on Test 1 and 2
• Expect questions from the last four weeks of class (data, visualization,

machine learning)
• Similar format

68D. Koop, CSCI 503/490, Fall 2022

http://faculty.cs.niu.edu/~dakoop/cs503-2022fa/final.html

