
Programming Principles in Python (CSCI 503/490)

Data

Dr. David Koop

D. Koop, CSCI 503/490, Fall 2022

Data Frame

2D. Koop, CSCI 503/490, Fall 2022

Data Frame

2D. Koop, CSCI 503/490, Fall 2022

Column Names

Data Frame

2D. Koop, CSCI 503/490, Fall 2022

Column Names

Index

Data Frame

2D. Koop, CSCI 503/490, Fall 2022

Column Names

Index

Column: df['Island']

Data Frame

2D. Koop, CSCI 503/490, Fall 2022

Column Names

Index

Column: df['Island']

Row: df.loc[2]

Data Frame

2D. Koop, CSCI 503/490, Fall 2022

Column Names

Index

Column: df['Island']

Cell: df.loc[341,'Species']

Row: df.loc[2]

Data Frame

2D. Koop, CSCI 503/490, Fall 2022

Column Names

Index

Column: df['Island']

Cell: df.loc[341,'Species']

Missing Data

Row: df.loc[2]

Filtering

3D. Koop, CSCI 503/490, Fall 2022

df[df['Culmen Length (mm)'] > 40]

Filtering

3D. Koop, CSCI 503/490, Fall 2022

df[df['Culmen Length (mm)'] > 40]

Reading and Writing Data
• Reading:

- df = pd.read_csv(fname)

• Writing
- df.to_csv(fname)

• Many options also possible on both
- sep: the separator (defaults to comma)
- skiprows: when reading, number of list of lines to skip
- index: set to None when writing if unimportant

• Also methods for other formats (json, parquet, sql)
• Methods are read_* and to_*

4D. Koop, CSCI 503/490, Fall 2022

Writing CSV data with pandas
• Basic: df.to_csv(<fname>)
• Change delimiter with sep kwarg:

- df.to_csv('example.dsv', sep='|')

• Change missing value representation
- df.to_csv('example.dsv', na_rep='NULL')

• Don't write row or column labels:
- df.to_csv('example.csv', index=False, header=False)

• Series may also be written to csv

5D. Koop, CSCI 503/490, Fall 2022

Derived Data
• Create new columns from existing columns

- r["PctFail"] = r['Fail'] / r['Total']

• Note that operations are computed in a vectorized manner
• Similarities to functional paradigm (map/filter):
- specify the operation once
- no loops
- interpreted as an operation on the entire column

6D. Koop, CSCI 503/490, Fall 2022

Assignment 7
• Musical Artists Datasets
• Downloading and uncompressing files
• Finding files using OS libraries
• Load per-artist numpy arrays, each saved in the .npy format
• Store per-month dataframes, each in a csv file

7D. Koop, CSCI 503/490, Fall 2022

https://faculty.cs.niu.edu/~dakoop/cs503-2022fa/assignment7.html

Aggregation
• Descriptive statistics

- df['Culmen Length (mm)'].mean()

- .median()

- .describe()

- .count()

- .min(), .max()

• Also general methods
- .sum()

- .product()

8D. Koop, CSCI 503/490, Fall 2022

Aggregation of time series data, a special use case of groupby, is referred
to as resampling in this book and will receive separate treatment in
Chapter 10.

GroupBy Mechanics
Hadley Wickham, an author of many popular packages for the R programming lan-
guage, coined the term split-apply-combine for talking about group operations, and I
think that’s a good description of the process. In the first stage of the process, data
contained in a pandas object, whether a Series, DataFrame, or otherwise, is split into
groups based on one or more keys that you provide. The splitting is performed on a
particular axis of an object. For example, a DataFrame can be grouped on its rows
(axis=0) or its columns (axis=1). Once this is done, a function is applied to each group,
producing a new value. Finally, the results of all those function applications are com-
bined into a result object. The form of the resulting object will usually depend on what’s
being done to the data. See Figure 9-1 for a mockup of a simple group aggregation.

Figure 9-1. Illustration of a group aggregation

Each grouping key can take many forms, and the keys do not have to be all of the same
type:

• A list or array of values that is the same length as the axis being grouped

• A value indicating a column name in a DataFrame

250 | Chapter 9: Data Aggregation and Group Operations

Split-Apply-Combine

9

[W. McKinney, Python for Data Analysis]
D. Koop, CSCI 503/490, Fall 2022

Split-Apply-Combine
• Similar to Map (split+apply) Reduce (combine) paradigm
• The Pattern:
1. Split the data by some grouping variable
2. Apply some function to each group independently
3. Combine the data into some output dataset

• The apply step is usually one of:
- Aggregate
- Transform
- Filter

10

[T. Brandt]
D. Koop, CSCI 503/490, Fall 2022

In Pandas
• groupby method creates a GroupBy object
• groupby doesn't actually compute anything until there is an apply/aggregate

step or we wish to examine the groups
• Choose keys (columns) to group by
• size() is the count of each group
• Other aggregates also work

11D. Koop, CSCI 503/490, Fall 2022

Examples
• df.groupby('Island')

• df.groupby('Island').size()

• df.groupby('Island')['Culmen Length (mm)'].mean()

12D. Koop, CSCI 503/490, Fall 2022

Split-Apply-Combine
• df.groupby('Island')[['Culmen Length (mm)',
 'Culmen Depth (mm)']].mean()

• df.groupby('Island').agg({'Culmen Length (mm)': 'mean',
 'Culmen Depth (mm)': 'mean'})

• df.groupby('Island').agg(
 cul_length=('Culmen Length (mm)', 'mean'),
 cul_depth=('Culmen Depth (mm)', 'mean'))

13D. Koop, CSCI 503/490, Fall 2022

Different Data Layouts

14

[H. Wickham, 2014]
D. Koop, CSCI 503/490, Fall 2022

Journal of Statistical Software 3

2.1. Data structure

Most statistical datasets are rectangular tables made up of rows and columns. The columns
are almost always labelled and the rows are sometimes labelled. Table 1 provides some data
about an imaginary experiment in a format commonly seen in the wild. The table has two
columns and three rows, and both rows and columns are labelled.

treatmenta treatmentb

John Smith — 2
Jane Doe 16 11
Mary Johnson 3 1

Table 1: Typical presentation dataset.

There are many ways to structure the same underlying data. Table 2 shows the same data
as Table 1, but the rows and columns have been transposed. The data is the same, but the
layout is di↵erent. Our vocabulary of rows and columns is simply not rich enough to describe
why the two tables represent the same data. In addition to appearance, we need a way to
describe the underlying semantics, or meaning, of the values displayed in table.

John Smith Jane Doe Mary Johnson

treatmenta — 16 3
treatmentb 2 11 1

Table 2: The same data as in Table 1 but structured di↵erently.

2.2. Data semantics

A dataset is a collection of values, usually either numbers (if quantitative) or strings (if
qualitative). Values are organised in two ways. Every value belongs to a variable and an
observation. A variable contains all values that measure the same underlying attribute (like
height, temperature, duration) across units. An observation contains all values measured on
the same unit (like a person, or a day, or a race) across attributes.

Table 3 reorganises Table 1 to make the values, variables and obserations more clear. The
dataset contains 18 values representing three variables and six observations. The variables
are:

1. person, with three possible values (John, Mary, and Jane).

2. treatment, with two possible values (a and b).

3. result, with five or six values depending on how you think of the missing value (-, 16,
3, 2, 11, 1).

The experimental design tells us more about the structure of the observations. In this exper-
iment, every combination of of person and treatment was measured, a completely crossed
design. The experimental design also determines whether or not missing values can be safely

Journal of Statistical Software 3

2.1. Data structure

Most statistical datasets are rectangular tables made up of rows and columns. The columns
are almost always labelled and the rows are sometimes labelled. Table 1 provides some data
about an imaginary experiment in a format commonly seen in the wild. The table has two
columns and three rows, and both rows and columns are labelled.

treatmenta treatmentb

John Smith — 2
Jane Doe 16 11
Mary Johnson 3 1

Table 1: Typical presentation dataset.

There are many ways to structure the same underlying data. Table 2 shows the same data
as Table 1, but the rows and columns have been transposed. The data is the same, but the
layout is di↵erent. Our vocabulary of rows and columns is simply not rich enough to describe
why the two tables represent the same data. In addition to appearance, we need a way to
describe the underlying semantics, or meaning, of the values displayed in table.

John Smith Jane Doe Mary Johnson

treatmenta — 16 3
treatmentb 2 11 1

Table 2: The same data as in Table 1 but structured di↵erently.

2.2. Data semantics

A dataset is a collection of values, usually either numbers (if quantitative) or strings (if
qualitative). Values are organised in two ways. Every value belongs to a variable and an
observation. A variable contains all values that measure the same underlying attribute (like
height, temperature, duration) across units. An observation contains all values measured on
the same unit (like a person, or a day, or a race) across attributes.

Table 3 reorganises Table 1 to make the values, variables and obserations more clear. The
dataset contains 18 values representing three variables and six observations. The variables
are:

1. person, with three possible values (John, Mary, and Jane).

2. treatment, with two possible values (a and b).

3. result, with five or six values depending on how you think of the missing value (-, 16,
3, 2, 11, 1).

The experimental design tells us more about the structure of the observations. In this exper-
iment, every combination of of person and treatment was measured, a completely crossed
design. The experimental design also determines whether or not missing values can be safely

4 Tidy Data

dropped. In this experiment, the missing value represents an observation that should have
been made, but wasn’t, so it’s important to keep it. Structural missing values, which represent
measurements that can’t be made (e.g., the count of pregnant males) can be safely removed.

name trt result

John Smith a —
Jane Doe a 16
Mary Johnson a 3
John Smith b 2
Jane Doe b 11
Mary Johnson b 1

Table 3: The same data as in Table 1 but with variables in columns and observations in rows.

For a given dataset, it’s usually easy to figure out what are observations and what are variables,
but it is surprisingly di�cult to precisely define variables and observations in general. For
example, if the columns in the Table 1 were height and weight we would have been happy
to call them variables. If the columns were height and width, it would be less clear cut, as
we might think of height and width as values of a dimension variable. If the columns were
home phone and work phone, we could treat these as two variables, but in a fraud detection
environment we might want variables phone number and number type because the use of one
phone number for multiple people might suggest fraud. A general rule of thumb is that it is
easier to describe functional relationships between variables (e.g., z is a linear combination
of x and y, density is the ratio of weight to volume) than between rows, and it is easier
to make comparisons between groups of observations (e.g., average of group a vs. average of
group b) than between groups of columns.

In a given analysis, there may be multiple levels of observation. For example, in a trial of new
allergy medication we might have three observational types: demographic data collected from
each person (age, sex, race), medical data collected from each person on each day (number
of sneezes, redness of eyes), and meterological data collected on each day (temperature,
pollen count).

2.3. Tidy data

Tidy data is a standard way of mapping the meaning of a dataset to its structure. A dataset is
messy or tidy depending on how rows, columns and tables are matched up with observations,
variables and types. In tidy data:

1. Each variable forms a column.

2. Each observation forms a row.

3. Each type of observational unit forms a table.

This is Codd’s 3rd normal form (Codd 1990), but with the constraints framed in statistical
language, and the focus put on a single dataset rather than the many connected datasets
common in relational databases. Messy data is any other other arrangement of the data.

Initial Data

Transpose

Tidy Data

Journal of Statistical Software 11

id year month element d1 d2 d3 d4 d5 d6 d7 d8

MX17004 2010 1 tmax — — — — — — — —
MX17004 2010 1 tmin — — — — — — — —
MX17004 2010 2 tmax — 27.3 24.1 — — — — —
MX17004 2010 2 tmin — 14.4 14.4 — — — — —
MX17004 2010 3 tmax — — — — 32.1 — — —
MX17004 2010 3 tmin — — — — 14.2 — — —
MX17004 2010 4 tmax — — — — — — — —
MX17004 2010 4 tmin — — — — — — — —
MX17004 2010 5 tmax — — — — — — — —
MX17004 2010 5 tmin — — — — — — — —

Table 11: Original weather dataset. There is a column for each possible day in the month. Columns
d9 to d31 have been omitted to conserve space.

id date element value

MX17004 2010-01-30 tmax 27.8
MX17004 2010-01-30 tmin 14.5
MX17004 2010-02-02 tmax 27.3
MX17004 2010-02-02 tmin 14.4
MX17004 2010-02-03 tmax 24.1
MX17004 2010-02-03 tmin 14.4
MX17004 2010-02-11 tmax 29.7
MX17004 2010-02-11 tmin 13.4
MX17004 2010-02-23 tmax 29.9
MX17004 2010-02-23 tmin 10.7

(a) Molten data

id date tmax tmin

MX17004 2010-01-30 27.8 14.5
MX17004 2010-02-02 27.3 14.4
MX17004 2010-02-03 24.1 14.4
MX17004 2010-02-11 29.7 13.4
MX17004 2010-02-23 29.9 10.7
MX17004 2010-03-05 32.1 14.2
MX17004 2010-03-10 34.5 16.8
MX17004 2010-03-16 31.1 17.6
MX17004 2010-04-27 36.3 16.7
MX17004 2010-05-27 33.2 18.2

(b) Tidy data

Table 12: (a) Molten weather dataset. This is almost tidy, but instead of values, the element column
contains names of variables. Missing values are dropped to conserve space. (b) Tidy weather dataset.
Each row represents the meteorological measurements for a single day. There are two measured
variables, minimum (tmin) and maximum (tmax) temperature; all other variables are fixed.

Problem: Variables stored in both rows & columns

15

[H. Wickham, 2014]
D. Koop, CSCI 503/490, Fall 2022

Mexico Weather, Global Historical Climatology Network

Journal of Statistical Software 11

id year month element d1 d2 d3 d4 d5 d6 d7 d8

MX17004 2010 1 tmax — — — — — — — —
MX17004 2010 1 tmin — — — — — — — —
MX17004 2010 2 tmax — 27.3 24.1 — — — — —
MX17004 2010 2 tmin — 14.4 14.4 — — — — —
MX17004 2010 3 tmax — — — — 32.1 — — —
MX17004 2010 3 tmin — — — — 14.2 — — —
MX17004 2010 4 tmax — — — — — — — —
MX17004 2010 4 tmin — — — — — — — —
MX17004 2010 5 tmax — — — — — — — —
MX17004 2010 5 tmin — — — — — — — —

Table 11: Original weather dataset. There is a column for each possible day in the month. Columns
d9 to d31 have been omitted to conserve space.

id date element value

MX17004 2010-01-30 tmax 27.8
MX17004 2010-01-30 tmin 14.5
MX17004 2010-02-02 tmax 27.3
MX17004 2010-02-02 tmin 14.4
MX17004 2010-02-03 tmax 24.1
MX17004 2010-02-03 tmin 14.4
MX17004 2010-02-11 tmax 29.7
MX17004 2010-02-11 tmin 13.4
MX17004 2010-02-23 tmax 29.9
MX17004 2010-02-23 tmin 10.7

(a) Molten data

id date tmax tmin

MX17004 2010-01-30 27.8 14.5
MX17004 2010-02-02 27.3 14.4
MX17004 2010-02-03 24.1 14.4
MX17004 2010-02-11 29.7 13.4
MX17004 2010-02-23 29.9 10.7
MX17004 2010-03-05 32.1 14.2
MX17004 2010-03-10 34.5 16.8
MX17004 2010-03-16 31.1 17.6
MX17004 2010-04-27 36.3 16.7
MX17004 2010-05-27 33.2 18.2

(b) Tidy data

Table 12: (a) Molten weather dataset. This is almost tidy, but instead of values, the element column
contains names of variables. Missing values are dropped to conserve space. (b) Tidy weather dataset.
Each row represents the meteorological measurements for a single day. There are two measured
variables, minimum (tmin) and maximum (tmax) temperature; all other variables are fixed.

Problem: Variables stored in both rows & columns

15

[H. Wickham, 2014]
D. Koop, CSCI 503/490, Fall 2022

Mexico Weather, Global Historical Climatology Network

Variable in columns: day; Variable in rows: tmax/tmin

Journal of Statistical Software 11

id year month element d1 d2 d3 d4 d5 d6 d7 d8

MX17004 2010 1 tmax — — — — — — — —
MX17004 2010 1 tmin — — — — — — — —
MX17004 2010 2 tmax — 27.3 24.1 — — — — —
MX17004 2010 2 tmin — 14.4 14.4 — — — — —
MX17004 2010 3 tmax — — — — 32.1 — — —
MX17004 2010 3 tmin — — — — 14.2 — — —
MX17004 2010 4 tmax — — — — — — — —
MX17004 2010 4 tmin — — — — — — — —
MX17004 2010 5 tmax — — — — — — — —
MX17004 2010 5 tmin — — — — — — — —

Table 11: Original weather dataset. There is a column for each possible day in the month. Columns
d9 to d31 have been omitted to conserve space.

id date element value

MX17004 2010-01-30 tmax 27.8
MX17004 2010-01-30 tmin 14.5
MX17004 2010-02-02 tmax 27.3
MX17004 2010-02-02 tmin 14.4
MX17004 2010-02-03 tmax 24.1
MX17004 2010-02-03 tmin 14.4
MX17004 2010-02-11 tmax 29.7
MX17004 2010-02-11 tmin 13.4
MX17004 2010-02-23 tmax 29.9
MX17004 2010-02-23 tmin 10.7

(a) Molten data

id date tmax tmin

MX17004 2010-01-30 27.8 14.5
MX17004 2010-02-02 27.3 14.4
MX17004 2010-02-03 24.1 14.4
MX17004 2010-02-11 29.7 13.4
MX17004 2010-02-23 29.9 10.7
MX17004 2010-03-05 32.1 14.2
MX17004 2010-03-10 34.5 16.8
MX17004 2010-03-16 31.1 17.6
MX17004 2010-04-27 36.3 16.7
MX17004 2010-05-27 33.2 18.2

(b) Tidy data

Table 12: (a) Molten weather dataset. This is almost tidy, but instead of values, the element column
contains names of variables. Missing values are dropped to conserve space. (b) Tidy weather dataset.
Each row represents the meteorological measurements for a single day. There are two measured
variables, minimum (tmin) and maximum (tmax) temperature; all other variables are fixed.

Solution: Melting + Pivot

16

[H. Wickham, 2014]
D. Koop, CSCI 503/490, Fall 2022

Melt
• Want to keep each observation separate (tidy), aka pivot_longer

17

[AB Abhi]
D. Koop, CSCI 503/490, Fall 2022

df.melt(id_vars=["location", "Temperature"],
 var_name="Date", value_name="Value")

https://www.codementor.io/@abhishake/reshaping-pandas-data-with-melt-lazg3j4te

Pivot
• Sometimes, we have data that is given in "long" format and we would like

"wide" format (aka pivot_wider)
• Long format: column names are data values…
• Wide format: more like spreadsheet format
• Example:

18

[W. McKinney, Python for Data Analysis]
D. Koop, CSCI 503/490, Fall 2022

 two 1 6
 three 2 7
Colorado one 3 8
 two 4 9
 three 5 10

In [109]: df.unstack('state') In [110]: df.unstack('state').stack('side')
Out[109]: Out[110]:
side left right state Ohio Colorado
state Ohio Colorado Ohio Colorado number side
number one left 0 3
one 0 3 5 8 right 5 8
two 1 4 6 9 two left 1 4
three 2 5 7 10 right 6 9
 three left 2 5
 right 7 10

Pivoting “long” to “wide” Format
A common way to store multiple time series in databases and CSV is in so-called long
or stacked format:

data = pd.read_csv('ch07/macrodata.csv')
periods = pd.PeriodIndex(year=data.year, quarter=data.quarter, name='date')
data = DataFrame(data.to_records(),
 columns=pd.Index(['realgdp', 'infl', 'unemp'], name='item'),
 index=periods.to_timestamp('D', 'end'))

ldata = data.stack().reset_index().rename(columns={0: 'value'})

In [116]: ldata[:10]
Out[116]:
 date item value
0 1959-03-31 realgdp 2710.349
1 1959-03-31 infl 0.000
2 1959-03-31 unemp 5.800
3 1959-06-30 realgdp 2778.801
4 1959-06-30 infl 2.340
5 1959-06-30 unemp 5.100
6 1959-09-30 realgdp 2775.488
7 1959-09-30 infl 2.740
8 1959-09-30 unemp 5.300
9 1959-12-31 realgdp 2785.204

Data is frequently stored this way in relational databases like MySQL as a fixed schema
(column names and data types) allows the number of distinct values in the item column
to increase or decrease as data is added or deleted in the table. In the above example
date and item would usually be the primary keys (in relational database parlance),
offering both relational integrity and easier joins and programmatic queries in many
cases. The downside, of course, is that the data may not be easy to work with in long
format; you might prefer to have a DataFrame containing one column per distinct

190 | Chapter 7: Data Wrangling: Clean, Transform, Merge, Reshape

item value indexed by timestamps in the date column. DataFrame’s pivot method per-
forms exactly this transformation:

In [117]: pivoted = ldata.pivot('date', 'item', 'value')

In [118]: pivoted.head()
Out[118]:
item infl realgdp unemp
date
1959-03-31 0.00 2710.349 5.8
1959-06-30 2.34 2778.801 5.1
1959-09-30 2.74 2775.488 5.3
1959-12-31 0.27 2785.204 5.6
1960-03-31 2.31 2847.699 5.2

The first two values passed are the columns to be used as the row and column index,
and finally an optional value column to fill the DataFrame. Suppose you had two value
columns that you wanted to reshape simultaneously:

In [119]: ldata['value2'] = np.random.randn(len(ldata))

In [120]: ldata[:10]
Out[120]:
 date item value value2
0 1959-03-31 realgdp 2710.349 1.669025
1 1959-03-31 infl 0.000 -0.438570
2 1959-03-31 unemp 5.800 -0.539741
3 1959-06-30 realgdp 2778.801 0.476985
4 1959-06-30 infl 2.340 3.248944
5 1959-06-30 unemp 5.100 -1.021228
6 1959-09-30 realgdp 2775.488 -0.577087
7 1959-09-30 infl 2.740 0.124121
8 1959-09-30 unemp 5.300 0.302614
9 1959-12-31 realgdp 2785.204 0.523772

By omitting the last argument, you obtain a DataFrame with hierarchical columns:

In [121]: pivoted = ldata.pivot('date', 'item')

In [122]: pivoted[:5]
Out[122]:
 value value2
item infl realgdp unemp infl realgdp unemp
date
1959-03-31 0.00 2710.349 5.8 -0.438570 1.669025 -0.539741
1959-06-30 2.34 2778.801 5.1 3.248944 0.476985 -1.021228
1959-09-30 2.74 2775.488 5.3 0.124121 -0.577087 0.302614
1959-12-31 0.27 2785.204 5.6 0.000940 0.523772 1.343810
1960-03-31 2.31 2847.699 5.2 -0.831154 -0.713544 -2.370232

In [123]: pivoted['value'][:5]
Out[123]:
item infl realgdp unemp
date
1959-03-31 0.00 2710.349 5.8
1959-06-30 2.34 2778.801 5.1

Reshaping and Pivoting | 191

.pivot('date', 'item', 'value')

Reshaping Data
• Reshape/pivoting are fundamental operations
• Can have a nested index in pandas
• Example: Congressional Districts (Ohio's 1st, 2nd, 3rd, Colorado's 1st, 2nd,

3rd) and associated representative rankings
• Could write this in different ways:

19D. Koop, CSCI 503/490, Fall 2022

2 5 4 10
3 3 6 14
4 7 8 NaN

Reshaping and Pivoting
There are a number of fundamental operations for rearranging tabular data. These are
alternatingly referred to as reshape or pivot operations.

Reshaping with Hierarchical Indexing
Hierarchical indexing provides a consistent way to rearrange data in a DataFrame.
There are two primary actions:

• stack: this “rotates” or pivots from the columns in the data to the rows

• unstack: this pivots from the rows into the columns

I’ll illustrate these operations through a series of examples. Consider a small DataFrame
with string arrays as row and column indexes:

In [94]: data = DataFrame(np.arange(6).reshape((2, 3)),
 : index=pd.Index(['Ohio', 'Colorado'], name='state'),
 : columns=pd.Index(['one', 'two', 'three'], name='number'))

In [95]: data
Out[95]:
number one two three
state
Ohio 0 1 2
Colorado 3 4 5

Using the stack method on this data pivots the columns into the rows, producing a
Series:

In [96]: result = data.stack()

In [97]: result
Out[97]:
state number
Ohio one 0
 two 1
 three 2
Colorado one 3
 two 4
 three 5
dtype: int64

From a hierarchically-indexed Series, you can rearrange the data back into a DataFrame
with unstack:

In [98]: result.unstack()
Out[98]:
number one two three

188 | Chapter 7: Data Wrangling: Clean, Transform, Merge, Reshape

2 5 4 10
3 3 6 14
4 7 8 NaN

Reshaping and Pivoting
There are a number of fundamental operations for rearranging tabular data. These are
alternatingly referred to as reshape or pivot operations.

Reshaping with Hierarchical Indexing
Hierarchical indexing provides a consistent way to rearrange data in a DataFrame.
There are two primary actions:

• stack: this “rotates” or pivots from the columns in the data to the rows

• unstack: this pivots from the rows into the columns

I’ll illustrate these operations through a series of examples. Consider a small DataFrame
with string arrays as row and column indexes:

In [94]: data = DataFrame(np.arange(6).reshape((2, 3)),
 : index=pd.Index(['Ohio', 'Colorado'], name='state'),
 : columns=pd.Index(['one', 'two', 'three'], name='number'))

In [95]: data
Out[95]:
number one two three
state
Ohio 0 1 2
Colorado 3 4 5

Using the stack method on this data pivots the columns into the rows, producing a
Series:

In [96]: result = data.stack()

In [97]: result
Out[97]:
state number
Ohio one 0
 two 1
 three 2
Colorado one 3
 two 4
 three 5
dtype: int64

From a hierarchically-indexed Series, you can rearrange the data back into a DataFrame
with unstack:

In [98]: result.unstack()
Out[98]:
number one two three

188 | Chapter 7: Data Wrangling: Clean, Transform, Merge, Reshape

state
Ohio 0 1 2
Colorado 3 4 5

By default the innermost level is unstacked (same with stack). You can unstack a dif-
ferent level by passing a level number or name:

In [99]: result.unstack(0) In [100]: result.unstack('state')
Out[99]: Out[100]:
state Ohio Colorado state Ohio Colorado
number number
one 0 3 one 0 3
two 1 4 two 1 4
three 2 5 three 2 5

Unstacking might introduce missing data if all of the values in the level aren’t found in
each of the subgroups:

In [101]: s1 = Series([0, 1, 2, 3], index=['a', 'b', 'c', 'd'])

In [102]: s2 = Series([4, 5, 6], index=['c', 'd', 'e'])

In [103]: data2 = pd.concat([s1, s2], keys=['one', 'two'])

In [104]: data2.unstack()
Out[104]:
 a b c d e
one 0 1 2 3 NaN
two NaN NaN 4 5 6

Stacking filters out missing data by default, so the operation is easily invertible:

In [105]: data2.unstack().stack() In [106]: data2.unstack().stack(dropna=False)
Out[105]: Out[106]:
one a 0 one a 0
 b 1 b 1
 c 2 c 2
 d 3 d 3
two c 4 e NaN
 d 5 two a NaN
 e 6 b NaN
dtype: float64 c 4
 d 5
 e 6
 dtype: float64

When unstacking in a DataFrame, the level unstacked becomes the lowest level in the
result:

In [107]: df = DataFrame({'left': result, 'right': result + 5},
 : columns=pd.Index(['left', 'right'], name='side'))

In [108]: df
Out[108]:
side left right
state number
Ohio one 0 5

Reshaping and Pivoting | 189

Reshaping Data
• Reshape/pivoting are fundamental operations
• Can have a nested index in pandas
• Example: Congressional Districts (Ohio's 1st, 2nd, 3rd, Colorado's 1st, 2nd,

3rd) and associated representative rankings
• Could write this in different ways:

19D. Koop, CSCI 503/490, Fall 2022

2 5 4 10
3 3 6 14
4 7 8 NaN

Reshaping and Pivoting
There are a number of fundamental operations for rearranging tabular data. These are
alternatingly referred to as reshape or pivot operations.

Reshaping with Hierarchical Indexing
Hierarchical indexing provides a consistent way to rearrange data in a DataFrame.
There are two primary actions:

• stack: this “rotates” or pivots from the columns in the data to the rows

• unstack: this pivots from the rows into the columns

I’ll illustrate these operations through a series of examples. Consider a small DataFrame
with string arrays as row and column indexes:

In [94]: data = DataFrame(np.arange(6).reshape((2, 3)),
 : index=pd.Index(['Ohio', 'Colorado'], name='state'),
 : columns=pd.Index(['one', 'two', 'three'], name='number'))

In [95]: data
Out[95]:
number one two three
state
Ohio 0 1 2
Colorado 3 4 5

Using the stack method on this data pivots the columns into the rows, producing a
Series:

In [96]: result = data.stack()

In [97]: result
Out[97]:
state number
Ohio one 0
 two 1
 three 2
Colorado one 3
 two 4
 three 5
dtype: int64

From a hierarchically-indexed Series, you can rearrange the data back into a DataFrame
with unstack:

In [98]: result.unstack()
Out[98]:
number one two three

188 | Chapter 7: Data Wrangling: Clean, Transform, Merge, Reshape

2 5 4 10
3 3 6 14
4 7 8 NaN

Reshaping and Pivoting
There are a number of fundamental operations for rearranging tabular data. These are
alternatingly referred to as reshape or pivot operations.

Reshaping with Hierarchical Indexing
Hierarchical indexing provides a consistent way to rearrange data in a DataFrame.
There are two primary actions:

• stack: this “rotates” or pivots from the columns in the data to the rows

• unstack: this pivots from the rows into the columns

I’ll illustrate these operations through a series of examples. Consider a small DataFrame
with string arrays as row and column indexes:

In [94]: data = DataFrame(np.arange(6).reshape((2, 3)),
 : index=pd.Index(['Ohio', 'Colorado'], name='state'),
 : columns=pd.Index(['one', 'two', 'three'], name='number'))

In [95]: data
Out[95]:
number one two three
state
Ohio 0 1 2
Colorado 3 4 5

Using the stack method on this data pivots the columns into the rows, producing a
Series:

In [96]: result = data.stack()

In [97]: result
Out[97]:
state number
Ohio one 0
 two 1
 three 2
Colorado one 3
 two 4
 three 5
dtype: int64

From a hierarchically-indexed Series, you can rearrange the data back into a DataFrame
with unstack:

In [98]: result.unstack()
Out[98]:
number one two three

188 | Chapter 7: Data Wrangling: Clean, Transform, Merge, Reshape

state
Ohio 0 1 2
Colorado 3 4 5

By default the innermost level is unstacked (same with stack). You can unstack a dif-
ferent level by passing a level number or name:

In [99]: result.unstack(0) In [100]: result.unstack('state')
Out[99]: Out[100]:
state Ohio Colorado state Ohio Colorado
number number
one 0 3 one 0 3
two 1 4 two 1 4
three 2 5 three 2 5

Unstacking might introduce missing data if all of the values in the level aren’t found in
each of the subgroups:

In [101]: s1 = Series([0, 1, 2, 3], index=['a', 'b', 'c', 'd'])

In [102]: s2 = Series([4, 5, 6], index=['c', 'd', 'e'])

In [103]: data2 = pd.concat([s1, s2], keys=['one', 'two'])

In [104]: data2.unstack()
Out[104]:
 a b c d e
one 0 1 2 3 NaN
two NaN NaN 4 5 6

Stacking filters out missing data by default, so the operation is easily invertible:

In [105]: data2.unstack().stack() In [106]: data2.unstack().stack(dropna=False)
Out[105]: Out[106]:
one a 0 one a 0
 b 1 b 1
 c 2 c 2
 d 3 d 3
two c 4 e NaN
 d 5 two a NaN
 e 6 b NaN
dtype: float64 c 4
 d 5
 e 6
 dtype: float64

When unstacking in a DataFrame, the level unstacked becomes the lowest level in the
result:

In [107]: df = DataFrame({'left': result, 'right': result + 5},
 : columns=pd.Index(['left', 'right'], name='side'))

In [108]: df
Out[108]:
side left right
state number
Ohio one 0 5

Reshaping and Pivoting | 189

MultiIndex

Stack and Unstack
• stack: pivots from the columns into rows (may produce a Series!)
• unstack: pivots from rows into columns
• unstacking may add missing data
• stacking filters out missing data (unless dropna=False)
• can unstack at a different level by passing it (e.g. 0), defaults to innermost

level

20

[W. McKinney, Python for Data Analysis]
D. Koop, CSCI 503/490, Fall 2022

2 5 4 10
3 3 6 14
4 7 8 NaN

Reshaping and Pivoting
There are a number of fundamental operations for rearranging tabular data. These are
alternatingly referred to as reshape or pivot operations.

Reshaping with Hierarchical Indexing
Hierarchical indexing provides a consistent way to rearrange data in a DataFrame.
There are two primary actions:

• stack: this “rotates” or pivots from the columns in the data to the rows

• unstack: this pivots from the rows into the columns

I’ll illustrate these operations through a series of examples. Consider a small DataFrame
with string arrays as row and column indexes:

In [94]: data = DataFrame(np.arange(6).reshape((2, 3)),
 : index=pd.Index(['Ohio', 'Colorado'], name='state'),
 : columns=pd.Index(['one', 'two', 'three'], name='number'))

In [95]: data
Out[95]:
number one two three
state
Ohio 0 1 2
Colorado 3 4 5

Using the stack method on this data pivots the columns into the rows, producing a
Series:

In [96]: result = data.stack()

In [97]: result
Out[97]:
state number
Ohio one 0
 two 1
 three 2
Colorado one 3
 two 4
 three 5
dtype: int64

From a hierarchically-indexed Series, you can rearrange the data back into a DataFrame
with unstack:

In [98]: result.unstack()
Out[98]:
number one two three

188 | Chapter 7: Data Wrangling: Clean, Transform, Merge, Reshape

2 5 4 10
3 3 6 14
4 7 8 NaN

Reshaping and Pivoting
There are a number of fundamental operations for rearranging tabular data. These are
alternatingly referred to as reshape or pivot operations.

Reshaping with Hierarchical Indexing
Hierarchical indexing provides a consistent way to rearrange data in a DataFrame.
There are two primary actions:

• stack: this “rotates” or pivots from the columns in the data to the rows

• unstack: this pivots from the rows into the columns

I’ll illustrate these operations through a series of examples. Consider a small DataFrame
with string arrays as row and column indexes:

In [94]: data = DataFrame(np.arange(6).reshape((2, 3)),
 : index=pd.Index(['Ohio', 'Colorado'], name='state'),
 : columns=pd.Index(['one', 'two', 'three'], name='number'))

In [95]: data
Out[95]:
number one two three
state
Ohio 0 1 2
Colorado 3 4 5

Using the stack method on this data pivots the columns into the rows, producing a
Series:

In [96]: result = data.stack()

In [97]: result
Out[97]:
state number
Ohio one 0
 two 1
 three 2
Colorado one 3
 two 4
 three 5
dtype: int64

From a hierarchically-indexed Series, you can rearrange the data back into a DataFrame
with unstack:

In [98]: result.unstack()
Out[98]:
number one two three

188 | Chapter 7: Data Wrangling: Clean, Transform, Merge, Reshape

state
Ohio 0 1 2
Colorado 3 4 5

By default the innermost level is unstacked (same with stack). You can unstack a dif-
ferent level by passing a level number or name:

In [99]: result.unstack(0) In [100]: result.unstack('state')
Out[99]: Out[100]:
state Ohio Colorado state Ohio Colorado
number number
one 0 3 one 0 3
two 1 4 two 1 4
three 2 5 three 2 5

Unstacking might introduce missing data if all of the values in the level aren’t found in
each of the subgroups:

In [101]: s1 = Series([0, 1, 2, 3], index=['a', 'b', 'c', 'd'])

In [102]: s2 = Series([4, 5, 6], index=['c', 'd', 'e'])

In [103]: data2 = pd.concat([s1, s2], keys=['one', 'two'])

In [104]: data2.unstack()
Out[104]:
 a b c d e
one 0 1 2 3 NaN
two NaN NaN 4 5 6

Stacking filters out missing data by default, so the operation is easily invertible:

In [105]: data2.unstack().stack() In [106]: data2.unstack().stack(dropna=False)
Out[105]: Out[106]:
one a 0 one a 0
 b 1 b 1
 c 2 c 2
 d 3 d 3
two c 4 e NaN
 d 5 two a NaN
 e 6 b NaN
dtype: float64 c 4
 d 5
 e 6
 dtype: float64

When unstacking in a DataFrame, the level unstacked becomes the lowest level in the
result:

In [107]: df = DataFrame({'left': result, 'right': result + 5},
 : columns=pd.Index(['left', 'right'], name='side'))

In [108]: df
Out[108]:
side left right
state number
Ohio one 0 5

Reshaping and Pivoting | 189

stack

unstack

unstack(0)

T

String Methods
• Can do many of the same methods used for single strings on entire columns
• Requires .str prefix before calling the method

- violations.value.str.strip().str.split(' - Comments:')

• Also helps when extracting from a list
- comments.str[1]

21D. Koop, CSCI 503/490, Fall 2022

See Table 7-3 for a listing of some of Python’s string methods.

Regular expressions can also be used with many of these operations, as you’ll see.

Table 7-3. Python built-in string methods
Argument Description
count Return the number of non-overlapping occurrences of substring in the string.
endswith Returns True if string ends with su!x.
startswith Returns True if string starts with pre"x.
join Use string as delimiter for concatenating a sequence of other strings.
index Return position of "rst character in substring if found in the string; raises ValueError if not found.
find Return position of "rst character of !rst occurrence of substring in the string; like index, but returns –1

if not found.
rfind Return position of "rst character of last occurrence of substring in the string; returns –1 if not found.
replace Replace occurrences of string with another string.
strip,
rstrip,
lstrip

Trim whitespace, including newlines; equivalent to x.strip() (and rstrip, lstrip, respectively)
for each element.

split Break string into list of substrings using passed delimiter.
lower Convert alphabet characters to lowercase.
upper Convert alphabet characters to uppercase.
casefold Convert characters to lowercase, and convert any region-speci"c variable character combinations to a

common comparable form.
ljust,
rjust

Left justify or right justify, respectively; pad opposite side of string with spaces (or some other "ll
character) to return a string with a minimum width.

Regular Expressions
Regular expressions provide a flexible way to search or match (often more complex)
string patterns in text. A single expression, commonly called a regex, is a string
formed according to the regular expression language. Python’s built-in re module is
responsible for applying regular expressions to strings; I’ll give a number of examples
of its use here.

The art of writing regular expressions could be a chapter of its own
and thus is outside the book’s scope. There are many excellent tuto‐
rials and references available on the internet and in other books.

The re module functions fall into three categories: pattern matching, substitution,
and splitting. Naturally these are all related; a regex describes a pattern to locate in the
text, which can then be used for many purposes. Let’s look at a simple example:

7.3 String Manipulation | 213

String Methods

22

[W. McKinney, Python for Data Analysis]
D. Koop, CSCI 503/490, Fall 2022

Support for Datetime
• Python has datetime library to support dates and times
• pandas has a Timestamp data type that functions somewhat similarly
• Pandas can convert timestamps

- pd.to_datetime: versatile, can often guess format
• Like string methods, also a .dt accessor for datetime methods/properties
• With a timestamp, filtering based on datetimes becomes easier

- df[df['Inspection Date'] > '2021']

23D. Koop, CSCI 503/490, Fall 2022

Method chaining in pandas
• Tom Augspurger's post
• Effective Pandas book by Matt Harrison
• Functions written for chaining, and pipe allows custom functions
• def read(fp):

 df = (pd.read_csv(fp)
 .rename(columns=str.lower)
 .drop('unnamed: 36', axis=1)
 .pipe(extract_city_name)
 .pipe(time_to_datetime, ['dep_time', 'arr_time',
 'crs_arr_time', 'crs_dep_time'])
 .assign(fl_date=lambda x: pd.to_datetime(x['fl_date']),
 dest=lambda x: pd.Categorical(x['dest']),
 origin=lambda x: pd.Categorical(x['origin']),
 tail_num=lambda x: pd.Categorical(x['tail_num']),
 unique_carrier=lambda x: pd.Categorical(x['unique_carrier']),
 cancellation_code=lambda x: pd.Categorical(x['cancellation_code'])))
 return df

24D. Koop, CSCI 503/490, Fall 2022

https://tomaugspurger.github.io/method-chaining
https://store.metasnake.com/effective-pandas-book

Example: Inspect Intermediate Results
• def csnap(df, fn=lambda x: x.shape, msg=None):
 """ Custom Help function to print things in method chaining.
 Returns back the df to further use in chaining.
 """
 if msg:
 print(msg)
 display(fn(df))
 return df

• wine.pipe(csnap) # display data frame
 .rename(columns={"color_intensity": "ci"})
 .assign(color_filter=lambda x: np.where(x.hue > 1, 1, 0))
 .pipe(csnap) # display data frame
 …

25D. Koop, CSCI 503/490, Fall 2022

26

Food Inspections Example

D. Koop, CSCI 503/490, Fall 2022

