
Programming Principles in Python (CSCI 503/490)

Data

Dr. David Koop

D. Koop, CSCI 503/490, Fall 2022

pandas
• Contains high-level data structures and manipulation tools designed to make

data analysis fast and easy in Python
• Built on top of NumPy
• Built with the following requirements:
- Data structures with labeled axes (aligning data)
- Support time series data
- Do arithmetic operations that include metadata (labels)
- Handle missing data
- Add merge and relational operations

2D. Koop, CSCI 503/490, Fall 2022

Series
• A one-dimensional array (with a type) with an index
• Index defaults to numbers but can also be text (like a dictionary)
• Allows easier reference to specific items
• obj = pd.Series([7,14,-2,1])

• Basically two arrays: obj.values and obj.index
• Can specify the index explicitly and use strings
• obj2 = pd.Series([4, 7, -5, 3],
 index=['d', 'b', 'a', 'c'])

• Kind of like fixed-length, ordered dictionary + can create from a dictionary
• obj3 = pd.Series({'Ohio': 35000, 'Texas': 71000,
 'Oregon': 16000, 'Utah': 5000})

3D. Koop, CSCI 503/490, Fall 2022

Data Frame
• A dictionary of Series (labels for each series)
• A spreadsheet with row keys (the index) and column headers
• Has an index shared with each series
• Allows easy reference to any cell
• df = DataFrame({'state': ['Ohio', 'Ohio', 'Ohio', 'Nevada'],
 'year': [2000, 2001, 2002, 2001],
 'pop': [1.5, 1.7, 3.6, 2.4]})

• Index is automatically assigned just as with a series but can be passed in as
well via index kwarg

• Can reassign column names by passing columns kwarg

4D. Koop, CSCI 503/490, Fall 2022

DataFrame Access and Manipulation
• df.values → 2D NumPy array

• Accessing a column:
- df["<column>"]

- df.<column>

- Both return Series
- Dot syntax only works when the column is a valid identifier

• Assigning to a column:
- df["<column>"] = <scalar> # all cells set to same value

- df["<column>"] = <array> # values set in order

- df["<column>"] = <series> # values set according to match
 # between df and series indexes

5D. Koop, CSCI 503/490, Fall 2022

Indexing
• Same as with NumPy arrays but can use Series's index labels
• Slicing with labels: NumPy is exclusive, Pandas is inclusive!

- s = Series(np.arange(4))
s[0:2] # gives two values like numpy

- s = Series(np.arange(4), index=['a', 'b', 'c', 'd'])
s['a':'c'] # gives three values, not two!

• Obtaining data subsets
- […]: get columns by label
- loc[…]: get rows/cols by label
- iloc[…]: get rows/cols by position (integer index)

- For single cells (scalars), also have at and iat

6D. Koop, CSCI 503/490, Fall 2022

Data Frame

7D. Koop, CSCI 503/490, Fall 2022

Data Frame

7D. Koop, CSCI 503/490, Fall 2022

Column Names

Data Frame

7D. Koop, CSCI 503/490, Fall 2022

Column Names

Index

Data Frame

7D. Koop, CSCI 503/490, Fall 2022

Column Names

Index

Column: df['Island']

Data Frame

7D. Koop, CSCI 503/490, Fall 2022

Column Names

Index

Column: df['Island']

Row: df.loc[2]

Data Frame

7D. Koop, CSCI 503/490, Fall 2022

Column Names

Index

Column: df['Island']

Cell: df.loc[341,'Species']

Row: df.loc[2]

Data Frame

7D. Koop, CSCI 503/490, Fall 2022

Column Names

Index

Column: df['Island']

Cell: df.loc[341,'Species']

Missing Data

Row: df.loc[2]

Assignment 7
• Musical Artists Datasets
• Downloading and uncompressing files
• Finding files using OS libraries
• Load per-artist numpy arrays, each saved in the .npy format
• Store per-month dataframes, each in a csv file

8D. Koop, CSCI 503/490, Fall 2022

https://faculty.cs.niu.edu/~dakoop/cs503-2022fa/assignment7.html

Arithmetic
• Add, subtract, multiply, and divide are element-wise like numpy
• …but use labels to align
• …and missing labels lead to NaN (not a number) values

• also have .add, .subtract, … that allow fill_value argument
• obj3.add(obj4, fill_value=0)

9D. Koop, CSCI 503/490, Fall 2022

When only passing a dict, the index in the resulting Series will have the dict’s keys in
sorted order.

In [22]: states = ['California', 'Ohio', 'Oregon', 'Texas']

In [23]: obj4 = Series(sdata, index=states)

In [24]: obj4
Out[24]:
California NaN
Ohio 35000
Oregon 16000
Texas 71000
dtype: float64

In this case, 3 values found in sdata were placed in the appropriate locations, but since
no value for 'California' was found, it appears as NaN (not a number) which is con-
sidered in pandas to mark missing or NA values. I will use the terms “missing” or “NA”
to refer to missing data. The isnull and notnull functions in pandas should be used to
detect missing data:

In [25]: pd.isnull(obj4) In [26]: pd.notnull(obj4)
Out[25]: Out[26]:
California True California False
Ohio False Ohio True
Oregon False Oregon True
Texas False Texas True
dtype: bool dtype: bool

Series also has these as instance methods:

In [27]: obj4.isnull()
Out[27]:
California True
Ohio False
Oregon False
Texas False
dtype: bool

I discuss working with missing data in more detail later in this chapter.

A critical Series feature for many applications is that it automatically aligns differently-
indexed data in arithmetic operations:

In [28]: obj3 In [29]: obj4
Out[28]: Out[29]:
Ohio 35000 California NaN
Oregon 16000 Ohio 35000
Texas 71000 Oregon 16000
Utah 5000 Texas 71000
dtype: int64 dtype: float64

In [30]: obj3 + obj4
Out[30]:
California NaN
Ohio 70000

110 | Chapter 5: Getting Started with pandas

When only passing a dict, the index in the resulting Series will have the dict’s keys in
sorted order.

In [22]: states = ['California', 'Ohio', 'Oregon', 'Texas']

In [23]: obj4 = Series(sdata, index=states)

In [24]: obj4
Out[24]:
California NaN
Ohio 35000
Oregon 16000
Texas 71000
dtype: float64

In this case, 3 values found in sdata were placed in the appropriate locations, but since
no value for 'California' was found, it appears as NaN (not a number) which is con-
sidered in pandas to mark missing or NA values. I will use the terms “missing” or “NA”
to refer to missing data. The isnull and notnull functions in pandas should be used to
detect missing data:

In [25]: pd.isnull(obj4) In [26]: pd.notnull(obj4)
Out[25]: Out[26]:
California True California False
Ohio False Ohio True
Oregon False Oregon True
Texas False Texas True
dtype: bool dtype: bool

Series also has these as instance methods:

In [27]: obj4.isnull()
Out[27]:
California True
Ohio False
Oregon False
Texas False
dtype: bool

I discuss working with missing data in more detail later in this chapter.

A critical Series feature for many applications is that it automatically aligns differently-
indexed data in arithmetic operations:

In [28]: obj3 In [29]: obj4
Out[28]: Out[29]:
Ohio 35000 California NaN
Oregon 16000 Ohio 35000
Texas 71000 Oregon 16000
Utah 5000 Texas 71000
dtype: int64 dtype: float64

In [30]: obj3 + obj4
Out[30]:
California NaN
Ohio 70000

110 | Chapter 5: Getting Started with pandas

Oregon 32000
Texas 142000
Utah NaN
dtype: float64

Data alignment features are addressed as a separate topic.

Both the Series object itself and its index have a name attribute, which integrates with
other key areas of pandas functionality:

In [31]: obj4.name = 'population'

In [32]: obj4.index.name = 'state'

In [33]: obj4
Out[33]:
state
California NaN
Ohio 35000
Oregon 16000
Texas 71000
Name: population, dtype: float64

A Series’s index can be altered in place by assignment:

In [34]: obj.index = ['Bob', 'Steve', 'Jeff', 'Ryan']

In [35]: obj
Out[35]:
Bob 4
Steve 7
Jeff -5
Ryan 3
dtype: int64

DataFrame
A DataFrame represents a tabular, spreadsheet-like data structure containing an or-
dered collection of columns, each of which can be a different value type (numeric,
string, boolean, etc.). The DataFrame has both a row and column index; it can be
thought of as a dict of Series (one for all sharing the same index). Compared with other
such DataFrame-like structures you may have used before (like R’s data.frame), row-
oriented and column-oriented operations in DataFrame are treated roughly symmet-
rically. Under the hood, the data is stored as one or more two-dimensional blocks rather
than a list, dict, or some other collection of one-dimensional arrays. The exact details
of DataFrame’s internals are far outside the scope of this book.

While DataFrame stores the data internally in a two-dimensional for-
mat, you can easily represent much higher-dimensional data in a tabular
format using hierarchical indexing, a subject of a later section and a key
ingredient in many of the more advanced data-handling features in pan-
das.

Introduction to pandas Data Structures | 111

Filtering
• Same as with numpy arrays but allows use of column-based criteria

- data[data < 5] = 0

- data[data['three'] > 5]

• data < 5 → boolean data frame, can be used to select specific elements
• Multiple criteria, use &, |, and ~; remember parentheses!

- data[(data['three'] > 5) & (data['two'] < 10)]

• Also can check for missing values via isna()/isnull()/notnull()
- data[data['three'].notnull() & data['two'].isnull()]

10D. Koop, CSCI 503/490, Fall 2022

Filtering

11D. Koop, CSCI 503/490, Fall 2022

df[df['Culmen Length (mm)'] > 40]

Filtering

11D. Koop, CSCI 503/490, Fall 2022

df[df['Culmen Length (mm)'] > 40]

DataFrame Index
• Similar to index for Series
• Immutable
• Can be shared with multiple structures (DataFrames or Series)
• in operator works with: 'Ohio' in df.index
• Can choose new index column(s) with set_index()
• reindex creates a new object with the data conformed to new index

- obj2 = obj.reindex(['a', 'b', 'c', 'd', 'e'])

- can fill in missing values in different ways

12D. Koop, CSCI 503/490, Fall 2022

Sorting
• sort_values method on series

- obj.sort_values()

• Missing values (NaN) are at the end by default (na_position controls, can be
first)

• sort_values on DataFrame:
- df.sort_values(<list-of-columns>)

- df.sort_values(by=['a', 'b'])

• Also a sort_index method to sort by the index
- df.sort_index()

13D. Koop, CSCI 503/490, Fall 2022

Statistics
• sum: column sums (axis=1 gives sums over rows)
• missing values are excluded unless the whole slice is NaN
• idxmax, idxmin are like argmax, argmin (return index)
• describe: shortcut for easy stats!

14D. Koop, CSCI 503/490, Fall 2022

 one two
a 1.40 NaN
b 8.50 -4.5
c NaN NaN
d 9.25 -5.8

Another type of method is neither a reduction nor an accumulation. describe is one
such example, producing multiple summary statistics in one shot:

In [204]: df.describe()
Out[204]:
 one two
count 3.000000 2.000000
mean 3.083333 -2.900000
std 3.493685 2.262742
min 0.750000 -4.500000
25% 1.075000 -3.700000
50% 1.400000 -2.900000
75% 4.250000 -2.100000
max 7.100000 -1.300000

On non-numeric data, describe produces alternate summary statistics:

In [205]: obj = Series(['a', 'a', 'b', 'c'] * 4)

In [206]: obj.describe()
Out[206]:
count 16
unique 3
top a
freq 8
dtype: object

See Table 5-10 for a full list of summary statistics and related methods.

Table 5-10. Descriptive and summary statistics

Method Description

count Number of non-NA values

describe Compute set of summary statistics for Series or each DataFrame column

min, max Compute minimum and maximum values

argmin, argmax Compute index locations (integers) at which minimum or maximum value obtained, respectively

idxmin, idxmax Compute index values at which minimum or maximum value obtained, respectively

quantile Compute sample quantile ranging from 0 to 1

sum Sum of values

mean Mean of values

median Arithmetic median (50% quantile) of values

mad Mean absolute deviation from mean value

var Sample variance of values

std Sample standard deviation of values

Summarizing and Computing Descriptive Statistics | 135

 one two
a 1.40 NaN
b 8.50 -4.5
c NaN NaN
d 9.25 -5.8

Another type of method is neither a reduction nor an accumulation. describe is one
such example, producing multiple summary statistics in one shot:

In [204]: df.describe()
Out[204]:
 one two
count 3.000000 2.000000
mean 3.083333 -2.900000
std 3.493685 2.262742
min 0.750000 -4.500000
25% 1.075000 -3.700000
50% 1.400000 -2.900000
75% 4.250000 -2.100000
max 7.100000 -1.300000

On non-numeric data, describe produces alternate summary statistics:

In [205]: obj = Series(['a', 'a', 'b', 'c'] * 4)

In [206]: obj.describe()
Out[206]:
count 16
unique 3
top a
freq 8
dtype: object

See Table 5-10 for a full list of summary statistics and related methods.

Table 5-10. Descriptive and summary statistics

Method Description

count Number of non-NA values

describe Compute set of summary statistics for Series or each DataFrame column

min, max Compute minimum and maximum values

argmin, argmax Compute index locations (integers) at which minimum or maximum value obtained, respectively

idxmin, idxmax Compute index values at which minimum or maximum value obtained, respectively

quantile Compute sample quantile ranging from 0 to 1

sum Sum of values

mean Mean of values

median Arithmetic median (50% quantile) of values

mad Mean absolute deviation from mean value

var Sample variance of values

std Sample standard deviation of values

Summarizing and Computing Descriptive Statistics | 135

Unique Values and Value Counts
• unique() returns an array with only the unique values (no index)

- s = Series(['c','a','d','a','a','b','b','c','c'])
s.unique() # array(['c', 'a', 'd', 'b'])

• Also nunique() to count number of unique entries
• Data Frames use drop_duplicates
• value_counts returns a Series with index frequencies:

- s.value_counts() # Series({'c': 3,'a': 3,'b': 2,'d': 1})

15D. Koop, CSCI 503/490, Fall 2022

Reading & Writing Data in Pandas

16

[https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html]
D. Koop, CSCI 503/490, Fall 2022

Format
Type

Data Description Reader Writer
text CSV read_csv to_csv
text Fixed-Width Text File read_fwf
text JSON read_json to_json
text HTML read_html to_html
text Local clipboard read_clipboard to_clipboard

MS Excel read_excel to_excel
binary OpenDocument read_excel
binary HDF5 Format read_hdf to_hdf
binary Feather Format read_feather to_feather
binary Parquet Format read_parquet to_parquet
binary ORC Format read_orc
binary Msgpack read_msgpack to_msgpack
binary Stata read_stata to_stata
binary SAS read_sas
binary SPSS read_spss
binary Python Pickle Format read_pickle to_pickle
SQL SQL read_sql to_sql
SQL Google BigQuery read_gbq to_gbq

https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html
https://en.wikipedia.org/wiki/Comma-separated_values
https://www.json.org/
https://en.wikipedia.org/wiki/HTML
https://en.wikipedia.org/wiki/Microsoft_Excel
http://www.opendocumentformat.org/
https://support.hdfgroup.org/HDF5/whatishdf5.html
https://github.com/wesm/feather
https://parquet.apache.org/
https://https//orc.apache.org/
https://msgpack.org/index.html
https://en.wikipedia.org/wiki/Stata
https://en.wikipedia.org/wiki/SAS_(software)
https://en.wikipedia.org/wiki/SPSS
https://docs.python.org/3/library/pickle.html
https://en.wikipedia.org/wiki/SQL
https://en.wikipedia.org/wiki/BigQuery

read_csv
• Convenient method to read csv files
• Lots of different options to help get data into the desired format
• Basic: df = pd.read_csv(fname)
• Parameters:

- path: where to read the data from
- sep (or delimiter): the delimiter (',', ' ', '\t', '\s+')
- header: if None, no header
- index_col: which column to use as the row index
- names: list of header names (e.g. if the file has no header)
- skiprows: number of list of lines to skip

17D. Koop, CSCI 503/490, Fall 2022

Writing CSV data with pandas
• Basic: df.to_csv(<fname>)
• Change delimiter with sep kwarg:

- df.to_csv('example.dsv', sep='|')

• Change missing value representation
- df.to_csv('example.dsv', na_rep='NULL')

• Don't write row or column labels:
- df.to_csv('example.csv', index=False, header=False)

• Series may also be written to csv

18D. Koop, CSCI 503/490, Fall 2022

1 False
2 True
3 False
dtype: bool

I do not claim that pandas’s NA representation is optimal, but it is simple and reason-
ably consistent. It’s the best solution, with good all-around performance characteristics
and a simple API, that I could concoct in the absence of a true NA data type or bit
pattern in NumPy’s data types. Ongoing development work in NumPy may change this
in the future.

Table 5-12. NA handling methods

Argument Description

dropna Filter axis labels based on whether values for each label have missing data, with varying thresholds for how much
missing data to tolerate.

fillna Fill in missing data with some value or using an interpolation method such as 'ffill' or 'bfill'.

isnull Return like-type object containing boolean values indicating which values are missing / NA.

notnull Negation of isnull.

Filtering Out Missing Data
You have a number of options for filtering out missing data. While doing it by hand is
always an option, dropna can be very helpful. On a Series, it returns the Series with only
the non-null data and index values:

In [233]: from numpy import nan as NA

In [234]: data = Series([1, NA, 3.5, NA, 7])

In [235]: data.dropna()
Out[235]:
0 1.0
2 3.5
4 7.0
dtype: float64

Naturally, you could have computed this yourself by boolean indexing:

In [236]: data[data.notnull()]
Out[236]:
0 1.0
2 3.5
4 7.0
dtype: float64

With DataFrame objects, these are a bit more complex. You may want to drop rows
or columns which are all NA or just those containing any NAs. dropna by default drops
any row containing a missing value:

140 | Chapter 5: Getting Started with pandas

Handling Missing Data

19

[W. McKinney, Python for Data Analysis]
D. Koop, CSCI 503/490, Fall 2022

Derived Data
• Create new columns from existing columns

- r["PctFail"] = r['Fail'] / r['Total']

- r = r.assign(PctFail= r['Fail'] / r['Total'])
• Note that operations are computed in a vectorized manner
• Similarities to functional paradigm (map/filter):
- specify the operation once
- no loops
- interpreted as an operation on the entire column

20D. Koop, CSCI 503/490, Fall 2022

inplace
• Generally, when we modify a data frame, we reassign:

- rdf = df.reset_index()

- This is usually very efficient
- Allows for method chaining

• There are versions where you can do this "inplace":
- df.reset_index(inplace=True)

- This means no reassignment, but it isn't usually any faster nor better
- Sometimes still creates a copy
- Will likely be deprecated

21D. Koop, CSCI 503/490, Fall 2022

https://github.com/pandas-dev/pandas/issues/16529

Documentation
• pandas documentation is pretty good
• Lots of recipes on stackoverflow for particular data manipulations/queries

22D. Koop, CSCI 503/490, Fall 2022

https://pandas.pydata.org/docs/

