
Programming Principles in Python (CSCI 503/490)

Concurrency

Dr. David Koop

D. Koop, CSCI 503/490, Fall 2022

Python Modules for Working with the Filesystem
• In general, cross-platform! (Linux, Mac, Windows)
• os: translations of operating system commands
• shutil: better support for file and directory management
• fnmatch, glob: match filenames, paths
• os.path: path manipulations
• pathlib: object-oriented approach to path manipulations, also includes

some support for matching paths

2D. Koop, CSCI 503/490, Fall 2022

Listing Files in a Directory
• Difference between file and directory
• isfile/is_file and isdir/is_dir methods

- os.path.isfile/isdir
- DirEntry.is_file/is_dir
- Path.is_file/is_dir

• Test while iterating through
- from pathlib import Path
basepath = Path('my_directory/')
files_in_basepath = basepath.iterdir()
for item in files_in_basepath:
 if item.is_file():
 print(item.name)

3

[V. Ndlovu]
D. Koop, CSCI 503/490, Fall 2022

https://realpython.com/working-with-files-in-python/

File Attributes
• Getting information about a file is "stat"-ing it (from the system call name)
• Names are similarly a bit esoteric, use documentation
• os.stat or use .stat methods on DirEntry/Path
• Modification time:

- from pathlib import Path
current_dir = Path('my_directory')
for path in current_dir.iterdir():
 info = path.stat()
 print(info.st_mtime)

• Also can check existence: path.exists()

4

[V. Ndlovu]
D. Koop, CSCI 503/490, Fall 2022

https://docs.python.org/3/library/stat.html
https://realpython.com/working-with-files-in-python/

Filename Pattern Matching
• string.endswith/startswith: no wildcards
• fnmatch: adds * and ? wildcards to use when matching (not just like regex!)
• glob.glob: treats filenames starting with . as special
- can do recursive matchings (e.g. in subdirectories) using **

• pathlib.Path.glob: object-oriented version of glob
• from pathlib import Path
p = Path('.')
for name in p.glob('*.p*'):
 print(name)

• Also, can break apart paths:
- split/basename/dirname/join ~ parent/name/joinpath

5

[V. Ndlovu]
D. Koop, CSCI 503/490, Fall 2022

https://realpython.com/working-with-files-in-python/

Moving and Renaming Files/Directories
• Moving files or directories:

- shutil.move('dir_1/', 'backup/')

• Renaming files or directories:
- os.rename
- pathlib.Path.rename
- data_file = Path('data_01.txt')
data_file.rename('data.txt')

6

[V. Ndlovu]
D. Koop, CSCI 503/490, Fall 2022

https://realpython.com/working-with-files-in-python/

Archives
• zipfile: module to deal with zip files
• tarfile: module to deal with tar files, can compress (tar.gz)
• Easier: shutil.make_archive
- Specify base name, format, and root directory to archive
- shutil.make_archive('data/backup', 'tar', 'data/')

• To extract, use shutil.unpack_archive

7

[V. Ndlovu]
D. Koop, CSCI 503/490, Fall 2022

https://realpython.com/working-with-files-in-python/

Assignment 6
• Object-Oriented Programming & Exceptions
• Classes for an online market
• Use Inheritance
• Due Nov. 1 (before the exam)

8D. Koop, CSCI 503/490, Fall 2022

http://faculty.cs.niu.edu/~dakoop/cs503-2022fa/assignment6.html

Test 2
• Next Thursday in class, 12:30-1:45pm
• Covers material from the beginning of course, emphasizing material since

Test 1
• Similar Format to Test 1

9D. Koop, CSCI 503/490, Fall 2022

http://faculty.cs.niu.edu/~dakoop/cs503-2022fa/test2.html

10

Concurrency

D. Koop, CSCI 503/490, Fall 2022

11

What is concurrency?

D. Koop, CSCI 503/490, Fall 2022

12

Why do we care about concurrency
(threading and multiprocessing)?

D. Koop, CSCI 503/490, Fall 2022

Why concurrency?
• Speed:
- Moore's Law and multiple cores
- CPU-bound programs can use more cores

• Input/Output
- Programs often sit waiting for data to load from disk/network

13D. Koop, CSCI 503/490, Fall 2022

CPU-Bound
• Have to run each problem in sequence
• Wait for Problem 1 to finish before Problem 2 can start
• …even if they are totally separate problems!
• What if we could use another core for Problem 2?

14

[J. Anderson]
D. Koop, CSCI 503/490, Fall 2022

https://realpython.com/python-concurrency

I/O-Bound
• Waiting for the file system or network to get data
• Nothing else happens while we wait for I/O to finish
• What if we could do something else while waiting for I/O?

15

[J. Anderson]
D. Koop, CSCI 503/490, Fall 2022

https://realpython.com/python-concurrency

Threading
• Threading address the I/O waits by

letting separate pieces of a program
run at the same time

• Threads run in the same process
• Threads share the same memory

(and global variables)
• Operating system schedules threads;

it can manage when each thread
runs, e.g. round-robin scheduling

• When blocking for I/O, other threads
can run

16

[J. Anderson]
D. Koop, CSCI 503/490, Fall 2022

https://realpython.com/python-concurrency

Threading Problem: Race Conditions
• Two threads, T1 and T2 that increment a variable a = 42
• We don't know when these threads will be interrupted by the OS
• T1 reads the value of a (42)
T1 adds one and writes a (43) # T1 finished
T2 reads the value of a (43)
T2 adds one and writes a (44) # T2 finished

• T1 reads the value of a (42) # T1 INTERRUPT
T2 reads the value of a (42) # T2 INTERRUPT
T1 adds one and writes a (43) # T1 finished
T2 adds one and writes a (43) # T2 finished

• Two different answers!

17D. Koop, CSCI 503/490, Fall 2022

Threading Solution: Locking
• Ensure no two threads can access the same variable at the same time
• T1 acquires a lock on a
T1 reads the value of a (42) # T1 INTERRUPT
T2 waits for a lock on a # T2 BLOCKED, sleeps
T1 adds one and writes a (43)
T1 releases lock on a # T1 finished
T2 acquires a lock on a
T2 reads the value of a (43)
T2 adds one and writes a (44)
T2 releases lock on a # T2 finished

18D. Koop, CSCI 503/490, Fall 2022

Python and Threading
• import threading
def printer(num):
 print(num)
for i in range(5):
 t = threading.Thread(target=printer, args=(i,))
 t.start()

• Try this: you will likely see out-of-order outputs or weird formatting
• Why?

19D. Koop, CSCI 503/490, Fall 2022

Python Locks
• my_lock = threading.Lock()
def printer(num):
 with my_lock:
 print(num)

for i in range(5):
 t = threading.Thread(target=printer, args=(i,))
 t.start()

• With statement provides context manager to acquire and release the lock

20D. Koop, CSCI 503/490, Fall 2022

ThreadPoolExecutor
• Can be difficult to keep track of all threads
• Want to reuse threads instead of creating a new one each time
• Wait until all threads are done executing before next tasks
• ThreadPoolExecutor simplifies this
• from concurrent.futures import ThreadPoolExecutor
with ThreadPoolExecutor(max_workers=5) as executor:
 executor.map(printer, range(10))

• max_workers specifies the number of threads (can compute multiple times
on one thread)

• map figures out how to assign the inputs to the threads

21D. Koop, CSCI 503/490, Fall 2022

Python Threading Speed
• If I/O bound, threads work great because time spent waiting can now be

used by other threads
• Threads do not run simultaneously in standard Python, i.e. they cannot take

advantage of multiple cores
• Use threads when code is I/O bound, otherwise no real speed-up plus some

overhead for using threads

22D. Koop, CSCI 503/490, Fall 2022

Using multiple cores at once
• Python is linear/serial; only one thread executes at a time
• Python has garbage collection, releasing memory when not used
- Requires keeping track of all objects by reference counting
- a = {'IL','IN','OH'}
b = {'states': a}

- {'IL','IN',OH'} has a reference count of 2 (a and b both reference it)
• Problem: keeping track of references across different threads/processes

23D. Koop, CSCI 503/490, Fall 2022

Python and the GIL
• Remember Python integrates other libraries, including those written in C
• Python was designed to have a thread-safe interface for C libraries (which

were not necessarily themselves thread-safe)
• Could add locking to every value/data structure, but with multiple locks

comes possible deadlock
• Python instead has a Global Interpreter Lock (GIL) that must be acquired to

execute any Python code
• This effectively makes Python single-threaded (faster execution)
• Python requires threads to give up GIL after certain amount of time
• Python 3 improved allocation of GIL to threads by not allowing a single CPU-

bound thread to hog it

24D. Koop, CSCI 503/490, Fall 2022

Multiprocessing
• Multiple processes do not need to share the same memory, interact less
• Python makes the difference between processes and threads minimal in

most cases
• Big win: can take advantage of multiple cores!
• import multiprocessing
with multiprocessing.Pool() as pool:
 pool.map(printer, range(5))

• Warning: known issues with running this in the notebook, use in scripts or
look for alternate possibilities/library

• Set __spec__ = None to use the %run command in the notebook with a
multiprocessing script

25D. Koop, CSCI 503/490, Fall 2022

Multiprocessing address CPU-bound processes

26

[J. Anderson]
D. Koop, CSCI 503/490, Fall 2022

https://realpython.com/python-concurrency

Multiprocessing using concurrent.futures
• import concurrent.futures
import multiprocessing as mp
import time

def dummy(num):
 time.sleep(5)
 return num ** 2

with concurrent.futures.ProcessPoolExecutor(max_workers=5,
 mp_context=mp.get_context('fork')) as executor:
 results = executor.map(dummy, range(10))

• mp.get_context('fork') changes from 'spawn' used by default in
MacOS, works in notebook

27D. Koop, CSCI 503/490, Fall 2022

When to use threading or multiprocessing?
• If your code has a lot of I/O or Network usage:
- Multithreading is your best bet because of its low overhead

• If you have a GUI
- Multithreading so your UI thread doesn't get locked up

• If your code is CPU bound:
- You should use multiprocessing (if your machine has multiple cores)

28

[J. Anderson]
D. Koop, CSCI 503/490, Fall 2022

https://realpython.com/python-concurrency

Subroutines vs. Coroutines

29

[J. Weaver]
D. Koop, CSCI 503/490, Fall 2022

https://bbc.github.io/cloudfit-public-docs/asyncio/asyncio-part-1.html

Generators basically do this!
• def random_numbers(start=1, end=1000):
 while True:
 yield random.randint(start, end)
for x in random_numbers():
 print(x)

• The yield statements pause execution of the function and go back to the
main function

• They are almost coroutines except you can't pass anything in
• Hard to have multiple things going on

30D. Koop, CSCI 503/490, Fall 2022

asyncio
• Single event loop that controls when each task is run
• Tasks can be ready or waiting
• Tasks are not interrupted like they are with threading
- Task controls when control goes back to the main event loop
- Either waiting or complete

• Event loop keeps track of whether tasks are ready or waiting
- Re-checks to see if new tasks are now ready
- Picks the task that has been waiting the longest

31

[J. Anderson]
D. Koop, CSCI 503/490, Fall 2022

https://realpython.com/python-concurrency

async
• async is a keyword that tells Python that the function uses await
• Also async with context manager
• async def download_site(session, url):
 async with session.get(url) as response:
 print("Read {0} from {1}".format(
 response.content_length, url))

• asyncio uses a single thread
• Requires special libraries (aiohttp)
• Tends to have less overhead than multiprocessing

32D. Koop, CSCI 503/490, Fall 2022

asyncio

33D. Koop, CSCI 503/490, Fall 2022

