Programming Principles in Python (CSCI 503/490)

Object-Oriented Programming

Dr. David Koop

D. Koop, CSCI 503/490, Fall 2022

Classes and Instances in Python

e Class Definition:

- class Vehicle:

def 1nit (self, make, model, year, color):
self.make = make
self.model = model
self.year = year
self.color = color

def age(seltf):
return 2022 - self.year

® |[nstances:
- carl = Vehicle('Toyota', 'Camry', 2000, 'red')
- car2 = Vehicle('Dodge', 'Caravan', 2015, 'gray')

D. Koop, CSCI 503/490, Fall 2022 Northern Illinois University =~ 2

Visibility

® |n some languages, encapsulation allows certain attributes and methods to
oe hidden from those using an instance

e public (visible/available) vs. private (internal only)
e Python does not have visibility descriptors, but rather conventions (PEPS)
- Attributes & methods with a leading underscore () are intended as private

- Others are public
- You can still access private names If you want but generally shouldn't:

e print (carl. color hex)

- Double underscores leads to name mangling:

sel

—

f. idinternal vinis stored at self

._Vehicle__internal_vin

D. Koop, CSCI 503/490, Fall 2022

Northern Illinois University 3

Properties

e Properties allow transformations and checks but are accessed like attributes
® getter and setter have same name, but different decorators

e Decorators (<decorator-name>) do SOme magic
e dproperty

—

detf age(seltf) :
return 2021 - self.year

e dage.setter
def age(self, age):
self.year = 2021 - age
e Using property:

- carl.age = 20

D. Koop, CSCI 503/490, Fall 2022 Northern Illinois University 4

Exercise

e Create Stack and Queue classes
- Stack: last-in-first-out
- Queue: first-in-first-out
e Define constructor and push and pop methods for each

D. Koop, CSCI 503/490, Fall 2022 Northern Illinois University 5

INnheritance

¢ |s-a relationship: Car is a Vehicle, Truck is a Vehicle

e Make sure it isn't composition (has-a) relationship: Vehicle has wheels,
Vehicle has a steering wheel

e Subclass is specialization of base class (superclass)
- Car Is a subclass of Vehicle, Truck Is a subclass of Vehicle

e Can have an entire hierarchy of classes (e.g. Chevy Bolt is subclass of Car
which is a subclass of Vehicle)

e Single inheritance: only one base class
e Multiple inheritance: allows more than base class
- Many languages don't support, Python does

D. Koop, CSCI 503/490, Fall 2022 Northern Illinois University 6

Instance Attribute Conventions in Python

e Remember, the naming is the convention
e public: used anywhere
* protected: Used in class and subclasses

e private: used only in the specific class

e Note that double underscores induce name mangling to strongly discourage
access In other entities

D. Koop, CSCI 503/490, Fall 2022 Northern Illinois University 7

Subclass

e Just put superclass(-es) in parentheses after the class declaration
e class Car (Vehicle) :

def 1nit (self, make, model, year, color, num doors):
super (). 1nit (make, model, year, color)
self.num doors = num doors

—

def open door (self):

e super () IS a special method that locates the base class

- Constructor should call superclass constructor
- Extra arguments should be Initialized and extra instance methods

D. Koop, CSCI 503/490, Fall 2022 Northern Illinois University 8

Assignment 5

e Due October 24

o \\riting a Python Package and Command-Line Tools

e Same port entry data

e Find port code by name and state

e Compare port measures across different ports and dates

e [CSCI 503] Filter by measure

D. Koop, CSCI 503/490, Fall 2022 Northern Illinois University 9

http://faculty.cs.niu.edu/~dakoop/cs503-2022fa/assignment5.html

Quiz Tuesday

D. Koop, CSCI 503/490, Fall 2022 Northern Illinois University 10

Overriding Methods

e Cclass Rectangle:
def init (self, height,

— T width) : e S = Square (4)
self.h = height e s.set height (8)
1f.w = weight . .
SETEeT T TR - Which method is called?
def set height(self, height): _ Po\ymorphism
self.h = height | | |
def area(self): - Resolves according to inheritance
* '
return self.h self.w hlerarChy
e Cclass Square (Rectangle) :
def init (self, side): e s.area () w 64
super (). 1nit (side, side) - If no method defined, goes up the
def set height (self, height): INnheritance hierarchy until found

self.h = height
self.w = height

D. Koop, CSCI 503/490, Fall 2022 Northern Illinois University 11

Class and Static Methods

e Use Rclassmethod and @Rstaticmethod decorators

o Difference: class methods receive class as argument, static methods do not

e class Square (Rectangle) :
DEFAULT SIDE = 10

dclassmethod

—

def set default side(cls, s):
cls.DEFAULT SIDE = s

@staticmethod

—

def set default side static(s):
Square.DEFAULT SIDE = s

D. Koop, CSCI 503/490, Fall 2022 Northern Illinois University =~ 12

Class and Static Methods

e class Square (Rectangle) :
DEFAULT SIDE = 10

— —

def init (self, side=None) :

[—

1f side 1s None:
sl1de = Self.DEFAULT_S:DI
super (). 1nit (side, side)

L]

e Square.set default side (20)
s2 = Square ()
sZ2.s1de 2.0

e Square.set default side static(30)
s3 = Sqgquare ()
s3.s1de 30

D. Koop, CSCI 503/490, Fall 2022 Northern Illinois University 13

Class and Static Methods

e class NewSquare (Square) :
DEFAULT SIDE = 100

e NewSquare.set default side (200)
s> = NewSqguare ()
s5.s1de 200

e NewSquare.set default side static(300)

sbo = NewSguare ()
sb.side rrr 200 !
e \\Vhy"

- T'he static method sets Square.DEFAULT SIDE not the
NewsSquare.DEFAULT SIDE

L]

- self .DEFAULT SIDE resolves t0 NewSquare.DEFAULT SID.

D. Koop, CSCI 503/490, Fall 2022 Northern Illinois University 14

Checking type

e \We can check the type of a Python object using the type method:
- type (0) int

- type ("abc") str

- 3 = Square (4)

- type (s) square

e Allows comparisons:

—

- 1f type(s) == Square:

e But this Is False:

ﬁ

- 1f type(s) == Rectangle:

D. Koop, CSCI 503/490, Fall 2022 Northern Illinois University 15

Checking InstanceOf/Inheritance

® How can we see If an object is an instance of a particular class or whether a
particular class is a subclass of another”

e Both check is-a relationship (but differently)
® issubclass (clsl, cls2):checksif clsl Is-a (subclass of) cls?2
® isinstance (obj, cls):checks if obj Is-a(n instance of) cls

e Note that isinstance IS True If obj IS an instance of a class that is a
subclass of cls

- car = Car('Toyota', 'Camry', 2000, 'red', 4)
1sinstance (car, Vehicle) True

D. Koop, CSCI 503/490, Fall 2022 Northern Illinois University 16

INterfaces

® |n some languages, can define an abstract base class
- [he structure Is defined but without implementation
- Alternatively, some methods are defined abstract, others are implemented
¢ |nterfaces are important for types
- Method can specity a particular type that can be abstract
- [his doesn't matter as much in Python
e However, Python does have ABCs (Abstract Base Classes)
- Solution to be able to check for mappings, sequences via isinstance, €etc.

- abc.Mapping, abc.Sequence, abc.MutableSequence

D. Koop, CSCI 503/490, Fall 2022 Northern Illinois University 17

Duck lyping

o "I it looks like a duck and quacks like a duck, it must be a duck."

e Python "does not look at an object’s type to determine if it has the right
INnterface; instead, the method or attribute i1s simply called or used”

e Class Rectangle:
det area(seltf) :

e class Circle:
def area(sel?f) :

¢ |t doesn't matter that they don't have a common base class as long as they
respond to the methods/attributes we expect: shape.area ()

[Python Glossary]

D. Koop, CSCI 503/490, Fall 2022 Northern Illinois University 18

https://docs.python.org/3/glossary.html#term-duck-typing

Multiple Inheritance

e Can have a class inherit from two different superclasses
e HybridCar inherits from Car and Hybrid

e Python allows this!
- class HybridCar (Car, Hybrid) : ..

e Problem: how IS super () IS defined?

- Diamond Problem
- Python use the method resolution order (MRO) to determine order of calls

D. Koop, CSCI 503/490, Fall 2022 Northern Illinois University =~ 19

Method Resolution Order

e [he order In which Python checks classes for a method
* mro () IS aclass method

e Square.mro () [main .Square, maln .Rectangle, object]

e Order of base classes matters:

- class HybridCar (Car, Hybrid):
pass
HybridCar.mro () [main .HybridCar, main .Car,

malin .Hybrid, mailn .Vehicle, object]

- class HybridCar (Hybrid, Car):
pass
HybridCar.mro () | mailin .HybridCar, main .Hybrid,

main .Car, maln .Vehicle, object]

D. Koop, CSCI 503/490, Fall 2022 Northern Illinois University 20

Operator Overloading

e Dunder methods(add , contains , len)

e Example:

- class Square (Rectangle) :

dproperty
def side(self):

—

return self.h

def add (self, right):
return Square(self.side + right.side)
def repr (self) :
return f£f'{self. <class . name } ({self.side})’
new square = Square (38) + Square (4)
new square square (12)

D. Koop, CSCI 503/490, Fall 2022 Northern Illinois University 21

Operator Overloading Restrictions

® Precedence cannot be changed by overloading. However, parentheses can
obe used to force evaluation order in an expression.

* [he left-to-right or right-to-left grouping of an operator cannot be changed

e The “arity” of an operator—that is, whether it's a unary or binary operator—
cannot be changed.

® YOu cannot create new operators—only overload existing operators

* [he meaning of how an operator works on objects of built-in types cannot be
changed. You cannot change + so that it subtracts two integers

e \\Norks only with objects of custom classes or with a mixture of an object of a
custom class and an object of a bullt-In type.

[Deitel & Deitel]
D. Koop, CSCI 503/490, Fall 2022 Northern Illinois University =~ 22

Ternary Operator

ea =b<5?2b+5:b -5

o Kind of a welird construct, but can be a nice shortcut
e Python does this differently:

—

o <value> 1f

<condition> else <value>

o~

e Example: absx = x if x >= 0 else -x

e Reads so that the usual Is listed first and the abnormal case IS listed last
e "Usually this, else default to this other’

D. Koop, CSCI 503/490, Fall 2022 Northern Illinois University =~ 23

