
Programming Principles in Python (CSCI 503/490)

Object-Oriented Programming

Dr. David Koop

D. Koop, CSCI 503/490, Fall 2022

Program Execution
• Direct Unix execution of a program
- Add the hashbang (#!) line as the first line, two approaches
- #!/usr/bin/python

- #!/usr/bin/env python

- Sometimes specify python3 to make sure we're running Python 3
- File must be flagged as executable (chmod a+x) and have line endings
- Then you can say: $./filename.py arg1 ...

• Executing the Python compiler/interpreter
- $ python filename.py arg1 ...

• Same results either way

2D. Koop, CSCI 503/490, Fall 2022

Accepting Command-Line Parameters
• Parameters are received as a list of strings entitled sys.argv
• Need to import sys first
• sys.argv[0] is the name of the program as executed
- Executing as ./hw01.py or hw01.py will be passed as different strings

• sys.argv[n] is the nth argument
• sys.executable is the python executable being run

3D. Koop, CSCI 503/490, Fall 2022

Modules and Packages
• Python allows you to import code from other files, even your own
• A module is a collection of definitions
• A package is an organized collection of modules
• Modules can be
- a separate python file
- a separate C library that is written to be used with Python
- a built-in module contained in the interpreter
- a module installed by the user (via conda or pip)

• All types use the same import syntax

4

[RealPython]
D. Koop, CSCI 503/490, Fall 2022

https://realpython.com/python-modules-packages/

What is the purpose of having modules or packages?
• Code reuse: makes life easier because others have written solutions to

various problems
• Generally forces an organization of code that works together
• Standardizes interfaces; easier maintenance
• Encourages robustness, testing code

• This does take time so don't always create a module or package
- If you're going to use a method once, it's not worth putting it in a module
- If you're using the same methods over and over in (especially in different

projects), a module or package makes sense

5D. Koop, CSCI 503/490, Fall 2022

Importing modules
• import <module>

• import <module> as <another-identifier>

• from <module> import <identifer-list>

• from <module> import <identifer> as <another-identifier>, …

• import imports from the top, from … import imports "inner" names
• Need to use the qualified names when using import (foo.bar.mymethod)
• as clause renames the imported name

6D. Koop, CSCI 503/490, Fall 2022

Using an imported module
• Import module, and call functions with fully qualified name

- import math
math.log10(100)
math.sqrt(196)

• Import module into current namespace and use unqualified name
- from math import log10, sqrt
log10(100)
sqrt(196)

7D. Koop, CSCI 503/490, Fall 2022

Using code as a module, too
• def main():
 print("Running the main function")
main() # now, we're calling main

• Generally, when we import a module, we don’t want it to execute code.
• import my_code # prints "Running the main function"

• Whenever a module is imported, Python creates a special variable in the
module called __name__ whose value is the name of the imported module.

• We can change the final lines of our programs to:
- if __name__ == '__main__':
 main()

• main() only runs when the file is run as a script!

!D. Koop, CSCI 503/490, Fall 2022

Assignment 4
• Books in German
• Reading & Writing Files
• Iterators
• Converting certain values
• String Formatting
• CSCI 503 students compute and output statistics to compare authors

9D. Koop, CSCI 503/490, Fall 2022

http://faculty.cs.niu.edu/~dakoop/cs503-2022fa/assignment4.html

How does import work?
• When a module/package is imported, Python
- Searches for the module/package

• Sometimes this is internal
• Otherwise, there are directory paths (environment variable PYTHONPATH)

that python searches (accessible via sys.path)
- Loads it

• This will run the code in specified module (or __init__.py for a package)
- Binds the loaded names to a namespace

10

[RealPython]
D. Koop, CSCI 503/490, Fall 2022

https://realpython.com/python-import/

Namespaces
• An import defines a separate namespace while from…import adds names to

the current namespace
• Four levels of namespace
- builtins: names exposed internally in python
- global: names defined at the outermost level (wrt functions)
- local: names defined in the current function
- enclosing: names defined in the outer function (when nesting functions)

• def foo():
 a = 12
 def bar():
 print("This is a:", a)

11D. Koop, CSCI 503/490, Fall 2022

a is in the enclosing namespace of bar

Namespaces
• Namespace is basically a dictionary with

names and their values
• Accessing namespaces

- __builtins__, globals(), locals()
• Examine contents of a namespace:
dir(<namespace>)

• Python checks for a name in the sequence:
local, enclosing, global, builtins

• To access names in outer scopes, use
global (global) and nonlocal (enclosing)
declarations

12

[RealPython]
D. Koop, CSCI 503/490, Fall 2022

https://realpython.com/python-namespaces-scope/

Wildcard imports
• Wildcard imports import all names (non-private) in the module
• What about

- from math import *

• Avoid this!
- Unclear which names are available!
- Confuses someone reading your code
- Think about packages that define the same names!

• Allowed if republishing internal interface (e.g. in a package, you're exposing
functions defined in different modules

13D. Koop, CSCI 503/490, Fall 2022

Import Guidelines (from PEP 8)
• Imports should be on separate lines

- import sys, os

- import sys
import os

• When importing multiple names from the same package, do use same line
- from subprocess import Popen, PIPE

• Imports should be at the top of the file (order: standard, third-party, local)
• Avoid wildcard imports in most cases

14D. Koop, CSCI 503/490, Fall 2022

Conditional or Dynamic Imports
• Best practice is to put all imports at the beginning of the py file
• Sometimes, a conditional import is required

- if sys.version_info >= [3,7]:
 OrderedDict = dict
else:
 from collections import OrderedDict

• Can also dynamically load a module
- import importlib

- importlib.import_module("collections")

- The __import__ method can also be used

15D. Koop, CSCI 503/490, Fall 2022

Absolute & Relative Imports
• Fully qualified names

- import foo.bar.submodule

• Relative names
- import .submodule

• Absolute imports recommended but relative imports acceptable

16D. Koop, CSCI 503/490, Fall 2022

Import Abbreviation Conventions
• Some libraries and users have developed particular conventions
• import numpy as np
• import pandas as pd
• import matplotlib.pyplot as plt
• This can lead to problems:

- sympy and scipy were both abbreviated sp for a while…

17D. Koop, CSCI 503/490, Fall 2022

Reloading a Module?
• If you re-import a module, what happens?

- import my_module
my_module.SECRET_NUMBER # 42

- Change the definition of SECRET_NUMBER to 14
- import my_module
my_module.SECRET_NUMBER # Still 42!

• Modules are cached so they are not reloaded on each import call
• Can reload a module via importlib.reload(<module>)
• Be careful because dependencies will persist! (Order matters)

18D. Koop, CSCI 503/490, Fall 2022

Python Packages
• A package is basically a collection of modules in a directory subtree
• Structures a module namespace by allowing dotted names
• Example:

- test_pkg/
 __init__.py
 foo.py
 bar.py
 baz/
 fun.py

• For packages that are to be executed as scripts, __main__.py can also be
added

19D. Koop, CSCI 503/490, Fall 2022

What's __init__.py used for?
• Used to be required to identify a Python package (< 3.3)
• Now, only required if a package (or sub-package) needs to run some

initialization when it is loaded
• Can be used to specify metadata
• Can be used to import submodule to make available without further import

- from . import <submodule>
• Can be used to specify which names exposed on import
- underscore names (_internal_function) not exposed by default
- __all__ list can further restrict, sets up an "interface" (applies to wildcard)

20D. Koop, CSCI 503/490, Fall 2022

What is __main__.py used for?
• Remember for a module, when it is run as the main script, its __name__ is
__main__

• Similar idea for packages
• Used as the entry point of a package when the package is being run (e.g. via
python -m)

- python -m test_pkg runs the code in __main__.py of the package

21D. Koop, CSCI 503/490, Fall 2022

22

Example

D. Koop, CSCI 503/490, Fall 2022

Finding Packages
• Python Package Index (PyPI) is the standard repository (https://pypi.org) and

pip (pip installs packages) is the official python package installer
- Types of distribution: source (sdist) and wheels (binaries)
- Each package can specify dependencies
- Creating a PyPI package requires adding some metadata

• Anaconda is a package index, conda is a package manager
- conda is language-agnostic (not only Python)
- solves dependencies
- conda deals with non-Python dependencies
- has different channels: default, conda-forge (community-led)

23D. Koop, CSCI 503/490, Fall 2022

https://pypi.org
https://anaconda.org

Installing Packages
• pip install <package-name>

• conda install <package-name>

• In Jupyter use:
- %pip install <package-name>

- %conda install <package-name>

• Arguments can be multiple packages
• Be careful! Security exploits using package installation and dependencies

(e.g. Alex Birsan)

24D. Koop, CSCI 503/490, Fall 2022

https://medium.com/@alex.birsan/dependency-confusion-4a5d60fec610

Environments
• Both pip and conda support environments
- venv
- conda env

• Idea is that you can create different environments for different work
- environment for cs503
- environment for research
- environment for each project

25D. Koop, CSCI 503/490, Fall 2022

26

Object-Oriented Programming

D. Koop, CSCI 503/490, Fall 2022

Object-Oriented Programming Concepts
• ?

27D. Koop, CSCI 503/490, Fall 2022

Object-Oriented Programming Concepts
• Abstraction: simplify, hide implementation details, don't repeat yourself
• Encapsulation: represent an entity fully, keep attributes and methods together
• Inheritance: reuse (don't reinvent the wheel), specialization
• Polymorphism: methods are handled by a single interface with different

implementations (overriding)

28D. Koop, CSCI 503/490, Fall 2022

Object-Oriented Programming Concepts
• Abstraction: simplify, hide implementation details, don't repeat yourself
• Encapsulation: represent an entity fully, keep attributes and methods together
• Inheritance: reuse (don't reinvent the wheel), specialization
• Polymorphism: methods are handled by a single interface with different

implementations (overriding)

29D. Koop, CSCI 503/490, Fall 2022

Vehicle Example
• Suppose we are implementing a city simulation, and want to model vehicles

driving on the road
• How do we represent a vehicle?
- Information (attributes)
- Methods (actions)

30D. Koop, CSCI 503/490, Fall 2022

Vehicle Example
• Suppose we are implementing a city simulation, and want to model vehicles

driving on the road
• How do we represent a vehicle?
- Information (attributes): make, model, year, color, num_doors, engine_type,

mileage, acceleration, top_speed, braking_speed
- Methods (actions): compute_estimated_value(), drive(num_seconds,

acceleration), turn_left(), turn_right(), change_lane(dir), brake(),
check_collision(other_vehicle)

31D. Koop, CSCI 503/490, Fall 2022

Other Entities
• Road, Person, Building, ParkingLot
• Some of these interact with a Vehicle, some don't
• We want to store information associated with entities in a structured way
- Building probably won't store anything about cars
- Road should not store each car's make/model
- …but we may have an association where a Road object keeps track of the

cars currently driving on it

32D. Koop, CSCI 503/490, Fall 2022

Object-Oriented Design
• There is a lot more than can be said about how to best define classes and

the relationship between different classes
• It's not easy to do this well!
• Software Engineering
• Entity Relationship (ER) Diagrams
• Difference between Object-Oriented Model and ER Model

33D. Koop, CSCI 503/490, Fall 2022

Class vs. Instance
• A class is a blueprint for creating instances
- e.g. Vehicle

• An instance is an single object created from a class
- e.g. 2000 Red Toyota Camry
- Each object has its own attributes
- Instance methods produce results unique to each particular instance

34D. Koop, CSCI 503/490, Fall 2022

Classes and Instances in Python
• Class Definition:

- class Vehicle:
 def __init__(self, make, model, year, color):
 self.make = make
 self.model = model
 self.year = year
 self.color = color

 def age(self):
 return 2021 - self.year

• Instances:
- car1 = Vehicle('Toyota', 'Camry', 2000, 'red')

- car2 = Vehicle('Dodge', 'Caravan', 2015, 'gray')

35D. Koop, CSCI 503/490, Fall 2022

36

Test 1

D. Koop, CSCI 503/490, Fall 2022

