
Programming Principles in Python (CSCI 503)

Modules and Packages

Dr. David Koop

D. Koop, CSCI 503/490, Fall 2022

Reading Files
• Use the open() method to open a file for reading

- f = open('huck-finn.txt')

• Usually, add an 'r' as the second parameter to indicate read (default)
• Can iterate through the file (think of the file as a collection of lines):

- f = open('huck-finn.txt', 'r')
for line in f:
 if 'Huckleberry' in line:
 print(line.strip())

• Using line.strip() because the read includes the newline, and print
writes a newline so we would have double-spaced text

• Closing the file: f.close()

2D. Koop, CSCI 503/490, Fall 2022

Parsing Files
• Dealing with different formats, determining more meaningful data from files
• txt: text file
• csv: comma-separated values
• json: JavaScript object notation
• Jupyter also has viewers for these formats
• Look to use libraries to help possible

- import json

- import csv

- import pandas

• Python also has pickle, but not used much anymore

3D. Koop, CSCI 503/490, Fall 2022

Writing Files: Use with statement
• outf = open("mydata.txt", "w")

• Methods for writing to a file:
- print(<expressions>, file= outf)
- outf.write(<string>)

- outf.writelines(<list of strings>)

• Make sure to close the file at the end: outf.close()
• With statement does "enter" and "exit": don't need to call outf.close()

- with open('output.txt', 'w') as outf:
 for k, v in counts.items():
 outf.write(k + ': ' + v + '\n')

4D. Koop, CSCI 503/490, Fall 2022

Assignment 4
• Books in German
• Reading & Writing Files
• Iterators
• Converting certain values
• String Formatting
• CSCI 503 students compute and output statistics to compare authors

5D. Koop, CSCI 503/490, Fall 2022

http://faculty.cs.niu.edu/~dakoop/cs503-2022fa/assignment4.html

Command Line Interfaces (CLIs)
• Prompt:
- $
-

• Commands
- $ cat <filename>

- $ git init

• Arguments/Flags: (options)
- $ python -h

- $ head -n 5 <filename>

- $ git branch fix-parsing-bug

6D. Koop, CSCI 503/490, Fall 2022

CLI Help/Usage
• No universal method
- no arguments: git
- -h or --help: python -h
- help subcommand: git help push

• Usage strings often include information about <required> and [optional]
arguments

- cat: usage: cat [-benstuv] [file …]
- python: usage: python ... [-c cmd | -m mod | file | -] [arg]
- git: usage: git [—version] … <command> [<args>]

7D. Koop, CSCI 503/490, Fall 2022

Consoles, Terminals, and Shells
• Originally:
- Console: hardware physically connected to host (e.g. maintenance)
- Terminal: hardware that connects to the host (may be remote)

• Today: Consoles and terminals are virtual, effectively emulating the physical
versions

• Shell: program that runs in the terminal
- interacts with users
- runs other programs
- e.g. zsh, bash, tcsh

8

[StackOverflow]
D. Koop, CSCI 503/490, Fall 2022

https://unix.stackexchange.com/questions/4126/what-is-the-exact-difference-between-a-terminal-a-shell-a-tty-and-a-con/4132#4132

Consoles, Terminals, and Shells in Jupyter
• Terminal mirrors the terminal in Linux terminals, Terminal.app (macOS), and

PowerShell (Windows)
- Runs more than just python

• Console provides IPython interface
- Easier multi-line editing
- Reference past outputs directly, other bells and whistles

• Shell will run in the Terminal app
• Can also use shell commands in the notebook using !

- !cat <filename>
- !head -n 10 <filename>

9D. Koop, CSCI 503/490, Fall 2022

Python and CLIs
• Python can be used as a CLI program
- Interactive mode: start the REPL

• $ python

- Non-interactive mode:
• $ python -c <command>: Execute a command
• $ python -m <module>|<package>: Execute a module

• Python can be used to create CLI programs
- Scripts: python my_script.py
- True command-line tools: ./command-written-in-python

10D. Koop, CSCI 503/490, Fall 2022

Interactive Python in the Shell
• Starting Python from the shell

- $ python

• >>> is the Python interactive prompt
- >>> print("Hello, world")
Hello, world

- >>> print("2+3=", 2+3)
2+3= 5

• This is a REPL (Read, Evaluate, Print, Loop)

11D. Koop, CSCI 503/490, Fall 2022

Interactive Python in the Shell
• ... is the continuation prompt
• >>> for i in range(5):
... print(i)
...

• Still need to indent appropriately!
• Empty line indicates the suite (block) is finished
• This isn't always the easiest environment to edit in

12D. Koop, CSCI 503/490, Fall 2022

Ending an Interactive Session
• Ctrl-D ends the input stream
- Just as in other Unix programs

• Another way to get normal termination
- >>> quit()

• Ctrl-C interrupts operation
- Just as in other Unix programs

13D. Koop, CSCI 503/490, Fall 2022

Interactive Problems
• But standard interactive Python doesn’t save programs!
• IPython does have some magic commands to help

- %history: prints code
- %save: saves a file with code
- These are most useful outside the notebook, but you can type them in the

notebook, too
• However, it is nice to be able to edit code in files and run it, too

14D. Koop, CSCI 503/490, Fall 2022

Module Files
• A module file is a text file with the .py extension, usually name.py
• Python source on Unix is expected to be in UTF-8
• Can use any text editor to write or edit…
• …but an editor that understands Python's spacing and indentation helps!
• Contents looks basically the same as what you would write in the cell(s) of a

notebook
• There are also ways to write code in multiple files organized as a package,

will cover this later

15D. Koop, CSCI 503/490, Fall 2022

Scripts, Programs, and Libraries
• Often, interpreted ~ scripts and compiled code ~ programs/libraries
- Python does compile bytecode for modules that are imported

• Modifying this usual definition a bit
- Script: a one-off block of code meant to be run by itself, users edit the

code if they wish to make changes
- Program: code meant to be used in different situations, with parameters

and flags to allow users to customize execution without editing the code
- Library: code meant to be called from other scripts/programs

• In Python, can't always tell from the name what's expected, code can be
both a library and a program

16D. Koop, CSCI 503/490, Fall 2022

Program Execution
• Direct Unix execution of a program
- Add the hashbang (#!) line as the first line, two approaches
- #!/usr/bin/python

- #!/usr/bin/env python

- Sometimes specify python3 to make sure we're running Python 3
- File must be flagged as executable (chmod a+x) and have line endings
- Then you can say: $./filename.py arg1 ...

• Executing the Python compiler/interpreter
- $ python filename.py arg1 ...

• Same results either way

17D. Koop, CSCI 503/490, Fall 2022

Writing CLI Programs
• Command Line Interface Guidelines
- Accept flags/arguments
- Human-readable output
- Allow non-interactive use even if program can also be interactive
- Add help/usage statements
- Consider subcommand use for complex tools
- Use simple, memorable name
- …

18D. Koop, CSCI 503/490, Fall 2022

https://clig.dev

Accepting Command-Line Parameters
• Parameters are received as a list of strings entitled sys.argv
• Need to import sys first
• sys.argv[0] is the name of the program as executed
- Executing as ./hw01.py or hw01.py will be passed as different strings

• sys.argv[n] is the nth argument
• sys.executable is the python executable being run

19D. Koop, CSCI 503/490, Fall 2022

Using Parameters
• Test len(sys.argv) to make sure the correct number of parameters were

passed
• Everything in sys.argv is a string, often need to cast arguments:

- my_value = int(sys.argv[1])

• Guard against bad inputs
- Test before using or deal with errors
- Use isnumeric or catch the exception
- Printing help/usage statement on error can help users

20D. Koop, CSCI 503/490, Fall 2022

The main function
• Convention: create a function named main()
• Customary, but not required

- def main():
 print("Running the main function")

• Nothing happens in a script with this definition!

!"D. Koop, CSCI 503/490, Fall 2022

The main function
• Convention: create a function named main()
• Customary, but not required

- def main():
 print("Running the main function")

• Nothing happens in a script with this definition!
• Need to call the function in our script!
• def main():
 print("Running the main function")
main() # now, we're calling main

!!D. Koop, CSCI 503/490, Fall 2022

Using code as a module, too
• When we want to start a program once it’s loaded, we include the line
main()at the bottom of the code.

• Since Python evaluates the lines of the program during the import process,
our current programs also run when they are imported into an interactive
Python session or into another Python program.

• import my_code # prints "Running the main function"

• Generally, when we import a module, we don’t want it to execute.

!#D. Koop, CSCI 503/490, Fall 2022

Knowing when the file is being used as a script
• Whenever a module is imported, Python creates a special variable in the

module called __name__ whose value is the name of the imported module.
• Example:
>>> import math
>>> math.__name__
'math'

• When Python code is run directly and not imported, the value of __name__ is
'__main__'.

• We can change the final lines of our programs to:
if __name__ == '__main__':
 main()

!$D. Koop, CSCI 503/490, Fall 2022

Modules and Packages
• Python allows you to import code from other files, even your own
• A module is a collection of definitions
• A package is an organized collection of modules
• Modules can be
- a separate python file
- a separate C library that is written to be used with Python
- a built-in module contained in the interpreter
- a module installed by the user (via conda or pip)

• All types use the same import syntax

25

[RealPython]
D. Koop, CSCI 503/490, Fall 2022

https://realpython.com/python-modules-packages/

26

What is the purpose of having modules or packages?

D. Koop, CSCI 503/490, Fall 2022

What is the purpose of having modules or packages?
• Code reuse: makes life easier because others have written solutions to

various problems
• Generally forces an organization of code that works together
• Standardizes interfaces; easier maintenance
• Encourages robustness, testing code

• This does take time so don't always create a module or package
- If you're going to use a method once, it's not worth putting it in a module
- If you're using the same methods over and over in (especially in different

projects), a module or package makes sense

27D. Koop, CSCI 503/490, Fall 2022

Module Contents
• Modules can contain
- functions
- variable (constant) declarations
- import statements
- class definitions
- any other code

• Note that variable values can be changed in the module's namespace, but
this doesn't affect other Python sessions.

28D. Koop, CSCI 503/490, Fall 2022

Importing modules
• import <module>

• import <module> as <another-identifier>

• from <module> import <identifer-list>

• from <module> import <identifer> as <another-identifier>, …

• import imports from the top, from … import imports "inner" names
• Need to use the qualified names when using import (foo.bar.mymethod)
• as clause renames the imported name

29D. Koop, CSCI 503/490, Fall 2022

