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Grammar of Graphics & Altair
• "Grammar of Graphics", L. Wilkinson 
• "A Layered Grammar of Graphics" + ggplot, H. Wickham 
• Vega: "Declarative language for creating, saving, and sharing interactive 

visualization designs" 
• Vega-Lite: higher-level language than Vega, carefully crafted rules for defaults 
• Altair: Python interface to Vega-Lite (J. VanderPlas) 
- "spend more time understanding your data and its meaning" 
- Specify the what, minimize the amount of code directing the how 
- Python can write JSON specification just as well as any other language 
- Bindings make it more Python-friendly, integrate with pandas, add support 

for Jupyter, etc.
2D. Koop, CSCI 503, Spring 2021



Basic Example
• import altair as alt 
import pandas as pd 
data = pd.DataFrame({'x': [1,3,4,6,10],'y': [1,5,2,7,3]}) 
alt.Chart(data).mark_line().encode(x='x', y='y') 

• Easiest to use data from a pandas data frame 
- Another option is a csv or json file 
- Can support geo_interface, too 

• Chart is the basic unit 
• Mark: .mark_*() indicates the geometry created for each data item 
• Encode: .encode() allows visual properties to be set to data attributes
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Visual Marks
• Marks are the basic graphical elements in a visualization 
• Marks classified by dimensionality: 

• Also can have surfaces, volumes 
• Think of marks as a mathematical definition, or if familiar with tools like Adobe 

Illustrator or Inkscape, the path & point definitions 
• Altair: area, bar, circle, geoshape, image, line, point, rect, rule, square, text, tick 
- Also compound marks: boxplot, errorband, errorbar 
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Data Attributes and Altair Types
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Data Attributes and Altair Types

• Categorical data = Nominal (N) 
• Ordinal data = Ordinal (O) 
• Quantitative data = Quantitative (Q) 
• Temporal data = Temporal (T)
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Magnitude Channels: Ordered Attributes Identity Channels: Categorical Attributes
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Color hue

Motion

Shape

Position on common scale

Position on unaligned scale

Length (1D size)

Tilt/angle

Area (2D size)

Depth (3D position)

Color luminance

Color saturation

Curvature

Volume (3D size)

Channels: Expressiveness Types and E!ectiveness Ranks
Different Channels for Different Attribute Types
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Altair will use its rules to pick 
whether to use color hue or 
saturation based on the type



Altair Supports Concatenation, Layering, & Repetition
• Layering: 
- + Operator 

• Concatenation: 
- Horizontal: | operator  
- Vertical: & operator 

• Repetition 
- Use of .repeat for layout 
- Reference repeated variables in the encoding
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Layering
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Concatenation
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Assignment 8
• Back to Pokémon Data 
• Calculate MaxCP in pandas and find 

highest per generation 
• Analyze attack, defense, and speed 

by primary type and generation using 
visualizations created with matplotlib 
and altair
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Final Exam
• Monday, April 26, 2:00-3:50pm, Online (Blackboard) 
• More comprehensive than Test 2 
• Expect questions from topics covered on Test 1 and 2 
• Expect questions from the last three weeks of class (data, visualization, 

machine learning) 
• Similar format
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Machine Learning Intro
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Tasks Machine Learning can Help With
• Identifying the zip code from handwritten digits on an envelope  

     
• Detecting fraudulent activity in credit card transactions  
• Identifying topics in a set of blog posts  
• Grouping customers with similar preferences
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Questions when building a machine learning solution
• What question(s) am I trying to answer? Do I think the data collected can 

answer that question? 
• What is the best way to phrase my question(s) as a machine learning 

problem?  
• Have I collected enough data to represent the problem I want to solve?  
• What features of the data did I extract, and will these enable the right 

predictions?  
• How will I measure success in my application?
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Machine Learning
• Traditional Programming 

• Machine Learning
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Machine Learning
• Every machine learning algorithm has three components: 
- Representation 
- Evaluation 
- Optimization
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Representation
• Decision trees 
• Sets of rules / Logic programs 
• Instances 
• Graphical models (Bayes/Markov nets) 
• Neural networks 
• Support vector machines 
• Model ensembles 
• Etc.
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Evaluation
• Accuracy 
• Precision and recall 
• Squared error 
• Likelihood 
• Posterior probability 
• Cost / Utility 
• Margin 
• Entropy 
• K-L divergence 
• Etc.

23

[P. Domingos]
D. Koop, CSCI 503, Spring 2021



Optimization
• Combinatorial optimization 
- E.g.: Greedy search 

• Convex optimization 
- E.g.: Gradient descent 

• Constrained optimization 
- E.g.: Linear programming
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Types of Learning
• Supervised (inductive) learning 
- Training data includes desired outputs 

• Unsupervised learning 
- Training data does not include desired outputs 

• Semi-supervised learning 
- Training data includes a few desired outputs 

• Reinforcement learning 
- Rewards from sequence of actions
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Areas of Machine Learning
• Supervised learning 
- Decision tree induction 
- Rule induction 
- Instance-based learning 
- Bayesian learning 
- Neural networks 
- Support vector machines 
- Model ensembles 
- Learning theory 

• Unsupervised learning 
- Clustering 
- Dimensionality reduction
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Supervised & Unsupervised Tasks
• Identifying the zip code from handwritten digits on an envelope (supervised) 

     
• Detecting fraudulent activity in credit card transactions (supervised) 
• Identifying topics in a set of blog posts (unsupervised) 
• Grouping customers with similar preferences (unsupervised)
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Supervised Learning
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https://jakevdp.github.io/PythonDataScienceHandbook/06.00-figure-code.html


Supervised Learning: Learned Algorithm (Fit)
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Supervised Learning: Prediction
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Supervised Learning: Prediction

31

[J. VanderPlas]
D. Koop, CSCI 503, Spring 2021

https://jakevdp.github.io/PythonDataScienceHandbook/06.00-figure-code.html


Unsupervised Learning: Input
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Unsupervised Learning: Output
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Scikit-Learn
• Started as a Google Summer of Code project! (D. Cournapeau, 2007) 
• Rewritten by scientists at INRIA (France) in 2010 
• Written in Python using numpy, some optimizations using C (cython) 
• The "gold standard" for machine learning in python
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https://scikit-learn.org/stable/about.html


scikit-learn Principles
• Consistency: all objects share consistent, documented interface 
• Inspection: parameters and parameter values determined by learning 

algorithms are stored and exposed as public attributes 
• Non-proliferation of classes: only learning algs are classes, not datasets or 

parameters; easier to combine with other libraries   
• Composition: create and reuse building blocks 
• Sensible defaults: user-defined parameters should have meaningful defaults
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scikit-learn entities
• Data: numpy matrices (also pandas series, data frames), process batches 
• Estimators: all supervised & unsupervised algs implement common interface 
- estimator initialization does not do learning, only attaches parameters 
- fit does the learning, learned parameters exposed with trailing underscore 

• Predictor: extends estimator with predict method 
- also provides score method to return value indicating prediction quality 

• Transformer: help modify or filter data before learning 
- Preprocessing, feature selection, feature extraction, and dimensionality 

reduction vis transform method 
- Can combine fit and transform via fit_transform
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Penguin Example
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Deep Learning
• Deep learning is tied to neural networks, attempting to mimic how human 

neurons work together 
• Hierarchical with multiple layers 
• Usually takes advantage of GPUs 
• Frameworks: 
- pytorch 
- TensorFlow 
- keras 
- theano
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