Programming Principles in Python (CSCI 503)

Data

Dr. David Koop

D. Koop, CSCI 503, Spring 2021 Northern Illinois University

CPU-Bound vs. I/O-Bound

CPU
Processing

Compute Problem 1

Compute Problem 2

/10
Waiting

Request 1

CPU
Processing

Request 2

Request 3

Time

[J. Anderson]

D. Koop, CSCI 503, Spring 2021

Northern Illinois University p

https://realpython.com/python-concurrency

Threading

e Threading address the |/O walits by
letting separate pieces of a program
run at the same time

* [hreads run in the same process /0 | Feduest
Waiting : Request 2
* [hreads share the same memory A Request 3
: ! : A ! i
(@nd global variables) Ly
: Thread 1 ! 1 '
* Operating system schedules threads; ceu =vvre B 3
. rocessing
it can manage when each thread Thread 3 3
runs, €.g. round-robin scheduling Time >
e \WVhen blocking for |/O, other threads
can run

[J. Anderson]

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 3

https://realpython.com/python-concurrency

Python Threading Speed

e |f |/O bound, threads work great because time spent waiting can now be
used by other threads

e [hreads do not run simultaneously in standard Python, i.e. they cannot take
advantage of multiple cores

e Use threads when code is I/0 bound, otherwise no real speed-up plus some
overhead for using threads

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 4

Python and the GIL

e Solution for reference counting (used for garbage collection)

e Could add locking to every value/data structure, but with multiple locks
comes possible deadlock

e Python instead has a Global Interpreter Lock (GIL) that must be acquired to
execute any Python code

e [his effectively makes Python single-threaded (faster execution)
e Python requires threads to give up GIL after certain amount of time

e Python 3 improved allocation of GIL to threads by not allowing a single CPU-
obound thread to hog it

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 5

Multiprocessing

e Multiple processes do not need to share the same memory, interact less

e Python makes the difference between processes and threads minimal in
most cases

e Big win: can take advantage of multiple cores!

e 1mport multilprocessing
with multiprocessing.Pool () as pool:
pool.map (printer, range(d))

e Warning: known issues with running this in the notebook, use in scripts or
look for alternate possibilities/library

e S5et spec = None to use the $run command in the notebook with a
Multiprocessing script

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 6

Multiprocessing using concurrent.futures

e 1mport concurrent.futures
import multliprocessing as mp
1mport time

def dummy (num) :
time.sleep (D)
return num ** 2

with concurrent.futures.ProcessPoolkExecutor (max workers=)5,
mp context=mp.get context('fork')) as executor:

results = executor.map (dummy, range (10))

* mp.get context ('fork') changes from 'spawn' used by default in
MacOS, works in notebook

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 7

When to use threading or multiprocessing’

e |f your code has a lot of [/O or Network usage:
- Multithreading Is your best bet because of its low overhead
e |f you have a GUI
- Multithreading so your Ul thread doesn't get locked up
e |f your code i1s CPU bound:
- You should use multiprocessing (if your machine has multiple cores)

[J. Anderson]

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 8

https://realpython.com/python-concurrency

Assignment 7

e Downloading and unarchiving files
¢ e system manipulation

e [hreading

e Basic Data Manipulation

e Due Friday

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 9

http://faculty.cs.niu.edu/~dakoop/cs503-2021sp/assignment7.html

Dandas

e Contains high-level data structures and manipulation tools designed to make
data analysis fast and easy in Python

e Bullt on top of NumPy
e Built with the following requirements:
- Data structures with labeled axes (aligning data)
- Support time series data
- Do arithmetic operations that include metadata (labels)
- Handle missing data
- Add merge and relational operations

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 10

Pandas Code Conventions

e Universal:

- 1mport pandas as pd

e Also used:

- from pandas 1mport Serles, DataFrame

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 11

Series

e A one-dimensional array (with a type) with an index
¢ |ndex defaults to numbers but can also be text (like a dictionary)

o Allows easlier reference to specific items
e Ob] = pd.Series([7,14,-2,1])

e Basically two arrays: obj.values and obj.index

e Can specify the index explicitly and use strings
e Obj]2 = pd.Series([4, 7, -5, 31,
index=['d', 'b', 'a', 'c'])
o Kind of like fixed-length, ordered dictionary + can create from a dictionary

e O3 pd.Series ({'Ohio': 35000, 'Texas': 71000,
'Oregon': 16000, 'Utah': 5000})

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 12

Series

e |[ndexing: s[1] Or s['Oregon']
e Can check for missing data: pd.isnull (s) Or pd.notnull (s)
e Both iIndex and values can have an assoclated name:

- s.name = 'population'; s.i1ndex.name = 'state'

o Addition and Num~Py ops work as expected and preserve the index-value link
e Arithmetic operations align:

In [28]: obj3 In [29]: obj4 In [30]: obj3 + obj4
Out[28]: Out[29]: Out[30]:

Ohio 35000 California NaN California NaN
Oregon 16000 Ohio 35000 Ohio 70000
Texas 71000 Oregon 16000 Oregon 32000
Utah 5000 Texas 71000 Texas 142000
dtype: int64 dtype: float64 Utah NaN

dtype: float64
[W. McKinney, Python for Data Analysis]

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 13

Data Frame

e A dictionary of Series (labels for each series)

e A spreadsheet with row keys (the index) and column headers
¢ Has an index shared with each series

e Allows easy reference to any cell

e df = DataFrame ({'state': ['Ohio', 'Ohio', 'Ohio', 'Nevada'],
'vear': [2000, 2001, 2002, 2001],
'vop': [1.5, 1.7, 3.6, 2.4]})

¢ |[ndex Is automatically assigned just as with a series but can be passed in as
well via Index kwarg

e Can reassign column names by passing columns kwarg

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 14

DataFrame Constructor Inputs

Type Notes
2D ndarray A matrix of data, passing optional row and column labels
dict of arrays, lists, or tuples Each sequence becomes a column in the DataFrame. All sequences must be the same length.

NumPy structured/record array ~ Treated as the “dict of arrays” case

dict of Series Each value becomes a column. Indexes from each Series are unioned together to form the
result’s row index if no explicit index is passed.

dict of dicts Each inner dict becomes a column. Keys are unioned to form the row index as in the “dict of
Series” case.

list of dicts or Series Each item becomes a row in the DataFrame. Union of dict keys or Series indexes become the
DataFrame’s column labels

List of lists or tuples Treated as the “2D ndarray” case

Another DataFrame The DataFrame’s indexes are used unless different ones are passed

NumPy MaskedArray Like the“2D ndarray” case except masked values become NA/missing in the DataFrame result

[W. McKinney, Python for Data Analysis]

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 15

DatarFrame Access and Manipulation

e df .values — 2D NumPy array

e Accessing a column:
- df ["<column>"|]

- df.<column>

- Both return Series

- Dot syntax only works when the column is a valid identifier
e Assigning to a column:

- df ["<column>"] = <scalar> all cells set to same wvalue
- df["<column>"] = <array> values set 1n order
- df ["<column>"] = <series> values set according to match

o

between df and series 1ndexes

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 16

DataFrame Ingex

e Similar to index for Series

o Immutable
e Can be shared with multiple structures (DataFrames or Series)

e in operator works with: 'ohio' in df.index

e Can choose new index column(s) with set index ()
e reindex creates a new object with the data conformed to new index
- obj2 = obj.reindex(['a', 'b', 'c', 'd', 'e'])

- can fill In missing values In different ways

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 17

Dropping entries

e Can drop one or more entries

® Series:
- new obj] = obj.drop('c')
-new:obj = obj.drop(['d"', 'c'])
e Data Frames:
- axis keyword defines which axis to drop (default O)
- axis=0 — rows, axis=1— columns

-axls = 'columns'

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 18

Indexing

e Same as with NumPy arrays but can use Series's index labels
e Slicing with labels: NumPYy is exclusive, Pandas is inclusive!

- 8 = Serilies(np.arange (4))
s[0:2] glves two values like numpy

- s = Seriles(np.arange(4), 1ndex=['a', 'b', 'c¢', 'd'])
s['a':"c'] gives three wvalues, not two!

e Obtaining data subsets
- [1: get columns by label

- loc: get rows/cols by label
- i1loc: get rows/cols by position (integer index)
- For single cells (scalars), also have at and iat

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 19

Indexing

e s = Serles(np.arange(4.), 1ndex=[4,3,2,1])
® S[3]
e s.loc[3]

e s.11oc[3]

® S/
o S/ [3]

pd.Series (np.arange (4), index=['a',6 'b','c','d'])

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 20

Indexing In Data Frames

o df["coll"'] a column

e df.loc['Oh1io'"] a Irow
e df.loc['Ohio', "coll"] the cell

e Multiple columns use a list Inside the brackets
- df[["'coll', "col2"]]

- Can nest these in loc, t00; df.1oc['Ohio', ['coll"', 'col2"']]

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 21

~litering

e Same as with numpy arrays but allows use of column-based criteria
- data[data < 5] = 0
- dataldata| 'three'] > 5]

e data < 5 — boolean data frame, can be used to select specific elements

e Multiple criteria, use &, |, and ~; remember parentheses!
- data| (data|['three'] > 5) & (data['two'] < 10)]

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 22

Arithmetic

e Add, subtract, multiply, and divide are element-wise like numpy
o .. .but use labels to align
e ...and missing labels lead to NaN (not a number) values

In [28]: obj3 In [29]: obj4 In [30]: obj3 + obj4
Out[28]: Out[29]: Out[30]:

Ohio 35000 California NaN California NaN
Oregon 16000 Ohio 35000 Oh1io 70000
Texas 71000 Oregon 16000 Oregon 32000
Utah 5000 Texas 71000 Texas 142000
dtype: 1nt64 dtype: float64 Utah NaN

dtype: float64
® 3lso have .add, .subtract, ... thatallow £i11 value argument
e Obj3.add(obj4, fill value=0)

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 23

Arithmetic between DataFrames and Series

e Broadcasting: e.g. apply single row operation across all rows

¢ Examp‘e: In [148]: frame In [149]: series In [150]: frame - series
Out[148]: Out[149]: Out[150]:
b d e b 0 b d e
Utah o 1 2 d 1 Utah 0 0 O
Ohio 3 4 5 e 2 Ohio 3 3 3
Texas 6 7 8 Name: Utah, dtype: float64 Texas 6 6 b6
Oregon 9 10 11 Oregon 9 9 9
e [0 broadcast over columns, use methods (. add, ...
In [154]: frame In [155]: series3 In [156]: frame.sub(series3, axis=0)
Out[154]: Out[155]: Out[156]:
b d e Utah 1 b d e
Utah 0o 1 2 Ohio 4 Utah -1 0 1
Ohio 3 4 5 Texas 7 Ohio -1 0 1
Texas 6 7 8 Oregon 10 Texas -1 0 1
Oregon 9 10 11 Name: d, dtype: float64 Oregon -1 0 1

D. Koop, CSCI 503, Spring 2021 Northern Illinois University =~ 24

Sorting by Index (sort_index)

e Sort by index (lexicographical):
In [168]: obj = Series(range(4), index=['d', 'a', 'b', 'c'])

]
]

In |

16 obj.sort index()
Out[16
1
2
3
0

9
9

a
b
C

d
dtype: int64

e DatalFrame sorting:

In [170]: frame = DataFrame(np.arange(8).reshape((2, 4)), index=['three', 'one'],

Ceeeet columns=['d', 'a', 'b', 'c'])
In [171]: frame.sort index() In [172]: frame.sort index(axis=1)
Out[171]: Out[172]:
d a b c a b c d
one 4 5 6 7 three 1 2 3 0
three 0 1 2 3 one 5 6 7 4
S

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 25

Sorting by Value (sort_values)

* sort values Method on series

- Oobj.sort values ()

e Missing values (NaN) are at the end by default (na position controls, can be
first)

* sort values On DataFrame:

- df.sort values (<list-of-columns>)

- df.sort values (by=['a', 'b'])
- Can also use axis=1 to sort by index labels

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 26

Ranking

® rank () methOd: In [182]: obj = Series([7, -5, 7, 4, 2, 0, 4])

In [183]: obj.rank()
Out[183]:
0 6

A DNW SO

)
1 .0
2 .5
3 .5
4 .0
5 .0
6 .5
dtype: float64 In [185]: obj.rank(ascending=False, method='max")

| Out[185]:
® ascending and method arguments:. o

1 /
2 pi
3 4
4 5
5 6
e \\Norks on data frames, too 6 4
dtype: float64

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 27

Statistics

* sum: cColumn sums (axis=1 giveS SUMS OVEer rows)

® Missing values are excluded unless the whole slice IS nan
* idxmax, idxmin are like argmax, argmin (return index)

* describe: shortcut for easy stats!

In [204
Out[204]:

count
mean
std
min
25%
50%
75%
max

~NP,~, RO WwWWwWwWw

one

.000000

.033333
4936385
. 750000

.075000
.400000
. 250000
.100000

: df.describe()

two

.000000
. 900000
.262742
. 500000
. /00000
. 900000
.100000
. 300000

In [205]:

In [206]:
Out[206]:

count
unique
top
freq

obj = Series(['a', 'a', 'b', 'c'] * 4)

obj.describe()

16

3
a

8

dtype: object

D. Koop, CSCI 503, Spring 2021

Northern Illinois University 28

Statistics

Method

count

describe

min, max
argmin, argmax
idxmin, idxmax
quantile

sum

mean

median

mad

var

std

skew

kurt

cumsum

cummin, cummax
cumprod

diff

pct change

Description
Number of non-NA values
Compute set of summary statistics for Series or each DataFrame column

Compute minimum and maximum values

Compute index locations (integers) at which minimum or maximum value obtained, respectively

Compute index values at which minimum or maximum value obtained, respectively
Compute sample quantile ranging from 0 to 1

Sum of values

Mean of values

Arithmetic median (50% quantile) of values

Mean absolute deviation from mean value

Sample variance of values

Sample standard deviation of values

Sample skewness (3rd moment) of values

Sample kurtosis (4th moment) of values

Cumulative sum of values

Cumulative minimum or maximum of values, respectively
Cumulative product of values

Compute 1st arithmetic difference (useful for time series)

Compute percent changes

[W. McKinney, Python for Data Analysis]

D. Koop, CSCI 503, Spring 2021

Northern Illinois University 29

Unique Values and Value Counts

e unique () returns an array with only the unique values (no index)
- s = Series(['c','a','d','a','a','b','b','c','c'])
s.unique () array(['c', 'a', 'd', 'b'])

e AlISO nunique () t0o count number of unigue entries

e Data Frames use drop duplicates
* value counts returns a Series with index frequencies:

- s.value counts () Series({'c': 3,'a': 3,'b': 2,'d': 1})

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 30

Handling Missing Data

Argument Description

dropna Filter axis labels based on whether values for each label have missing data, with varying thresholds for how much
missing data to tolerate.

fillna Fill in missing data with some value or using an interpolation method suchas 'ffill' or "bfill".

isnull Return like-type object containing boolean values indicating which values are missing / NA.

notnull Negationof isnull.

[W. McKinney, Python for Data Analysis]

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 31

Reading & Writing Data in Pandas

Format
text
text
text
text
text

binary
binary
binary
binary
binary
binary
binary
binary
binary
binary
SQL

SQL

Data Description
CcSV

Fixed-Width Text File
JSON

HTML

Local clipboard

MS Excel
OpenDocument
HDF5 Format
Feather Format
Parguet Format
ORC Format
Msgpack

Stata

SAS

SPSS

Python Pickle Format
SQL

Google BigQuery

Reader
read_csv
read_fwf
read_json
read_html
read_clipboard
read_excel
read_excel
read_hdf
read_feather
read_parquet
read_orc
read_msgpack
read_stata
read_sas
read_spss
read_pickle
read_sql
read_gbg

Writer
to_csv

to_json
to_html
to_clipboard
to_excel

to_hdf
to_feather
to_parquet

to_msgpack
to_stata

to_pickle
to_sql
to_gbqg

[https://pandas.pydata.org/pandas-docs/stable/user guide/io.html]

D. Koop, CSCI 503, Spring 2021

Northern Illinois University 32

https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html
https://en.wikipedia.org/wiki/Comma-separated_values
https://www.json.org/
https://en.wikipedia.org/wiki/HTML
https://en.wikipedia.org/wiki/Microsoft_Excel
http://www.opendocumentformat.org/
https://support.hdfgroup.org/HDF5/whatishdf5.html
https://github.com/wesm/feather
https://parquet.apache.org/
https://https//orc.apache.org/
https://msgpack.org/index.html
https://en.wikipedia.org/wiki/Stata
https://en.wikipedia.org/wiki/SAS_(software)
https://en.wikipedia.org/wiki/SPSS
https://docs.python.org/3/library/pickle.html
https://en.wikipedia.org/wiki/SQL
https://en.wikipedia.org/wiki/BigQuery

read CSV

e Convenient method to read csv files
o | ots of different options to help get data into the desired format

® BasiC: df = pd.read csv (fname)
® Parameters:
- path: where to read the data from
- sep (Or delimiter): the delimiter (*, ', ' ', '"\t', '\s+')
- header: If None, NO header
- index col: which column to use as the row index
- names:. list of header names (e.q. If the file has no header)
- skiprows: number of list of lines to skip

D. Koop, CSCI 503, Spring 2021 Northern Illinois University ~ 33

Writing CSV data with pandas

e BasiC: df.to csv (<fname>)

e Change delimiter with sep kwarg:

- df.to csv('example.dsv', sep=']|")

e Change missing value representation

- df.to csv('example.dsv', na rep='NULL")

e Don't write row or column labels:

- df.to csv('example.csv', 1ndex=False, header=False)

® Series may also be written to csv

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 34

inplace

e (Generally, when we modify a data frame, we reassign:

ﬁ

- rdf = df.reset index()

- This is usually very efficient
- Allows for method chaining
e [here are versions where you can do this "inplace”:

- df .reset 1ndex(inplace=True)

- This means no reassignment, but it isn't usually any faster nor better
- Sometimes still creates a copy
- Will likely be deprecated

D. Koop, CSCI 503, Spring 2021 Northern Illinois University ~ 35

https://github.com/pandas-dev/pandas/issues/16529

Documentation

e pandas documentation is pretty good
¢ | ots of recipes on stackoverflow for particular data manipulations/queries

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 36

https://pandas.pydata.org/docs/

Food Inspections Example

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 37

