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CPU-Bound vs. I/O-Bound
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Threading
• Threading address the I/O waits by 

letting separate pieces of a program 
run at the same time 

• Threads run in the same process 
• Threads share the same memory 

(and global variables) 
• Operating system schedules threads; 

it can manage when each thread 
runs, e.g. round-robin scheduling 

• When blocking for I/O, other threads 
can run
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Python Threading Speed
• If I/O bound, threads work great because time spent waiting can now be 

used by other threads 
• Threads do not run simultaneously in standard Python, i.e. they cannot take 

advantage of multiple cores 
• Use threads when code is I/O bound, otherwise no real speed-up plus some 

overhead for using threads
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Python and the GIL
• Solution for reference counting (used for garbage collection) 
• Could add locking to every value/data structure, but with multiple locks 

comes possible deadlock 
• Python instead has a Global Interpreter Lock (GIL) that must be acquired to 

execute any Python code 
• This effectively makes Python single-threaded (faster execution) 
• Python requires threads to give up GIL after certain amount of time 
• Python 3 improved allocation of GIL to threads by not allowing a single CPU-

bound thread to hog it
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Multiprocessing
• Multiple processes do not need to share the same memory, interact less 
• Python makes the difference between processes and threads minimal in 

most cases 
• Big win: can take advantage of multiple cores! 
• import multiprocessing 
with multiprocessing.Pool() as pool: 
        pool.map(printer, range(5)) 

• Warning: known issues with running this in the notebook, use in scripts or 
look for alternate possibilities/library 

• Set __spec__ = None to use the %run command in the notebook with a 
multiprocessing script
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Multiprocessing using concurrent.futures
• import concurrent.futures 
import multiprocessing as mp 
import time 
 
def dummy(num): 
    time.sleep(5) 
    return num ** 2 
 
with concurrent.futures.ProcessPoolExecutor(max_workers=5, 
             mp_context=mp.get_context('fork')) as executor: 
    results = executor.map(dummy, range(10)) 

• mp.get_context('fork') changes from 'spawn' used by default in 
MacOS, works in notebook
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When to use threading or multiprocessing?
• If your code has a lot of I/O or Network usage: 
- Multithreading is your best bet because of its low overhead 

• If you have a GUI 
- Multithreading so your UI thread doesn't get locked up 

• If your code is CPU bound: 
- You should use multiprocessing (if your machine has multiple cores)
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Assignment 7
• Downloading and unarchiving files 
• File system manipulation 
• Threading 
• Basic Data Manipulation 
• Due Friday
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pandas
• Contains high-level data structures and manipulation tools designed to make 

data analysis fast and easy in Python 
• Built on top of NumPy 
• Built with the following requirements: 
- Data structures with labeled axes (aligning data) 
- Support time series data 
- Do arithmetic operations that include metadata (labels) 
- Handle missing data 
- Add merge and relational operations
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Pandas Code Conventions
• Universal: 

- import pandas as pd 

• Also used: 
- from pandas import Series, DataFrame
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Series
• A one-dimensional array (with a type) with an index 
• Index defaults to numbers but can also be text (like a dictionary) 
• Allows easier reference to specific items 
• obj = pd.Series([7,14,-2,1]) 

• Basically two arrays: obj.values and obj.index 
• Can specify the index explicitly and use strings 
• obj2 = pd.Series([4, 7, -5, 3],  
                 index=['d', 'b', 'a', 'c']) 

• Kind of like fixed-length, ordered dictionary + can create from a dictionary 
• obj3 = pd.Series({'Ohio': 35000, 'Texas': 71000, 
                  'Oregon': 16000, 'Utah': 5000})
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Series
• Indexing: s[1] or s['Oregon'] 
• Can check for missing data: pd.isnull(s) or pd.notnull(s) 
• Both index and values can have an associated name: 

- s.name = 'population'; s.index.name = 'state' 

• Addition and NumPy ops work as expected and preserve the index-value link 
• Arithmetic operations align:
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When only passing a dict, the index in the resulting Series will have the dict’s keys in
sorted order.

In [22]: states = ['California', 'Ohio', 'Oregon', 'Texas']

In [23]: obj4 = Series(sdata, index=states)

In [24]: obj4
Out[24]: 
California      NaN
Ohio          35000
Oregon        16000
Texas         71000
dtype: float64

In this case, 3 values found in sdata were placed in the appropriate locations, but since
no value for 'California' was found, it appears as NaN (not a number) which is con-
sidered in pandas to mark missing or NA values. I will use the terms “missing” or “NA”
to refer to missing data. The isnull and notnull functions in pandas should be used to
detect missing data:

In [25]: pd.isnull(obj4)      In [26]: pd.notnull(obj4)
Out[25]:                      Out[26]:                 
California     True           California    False      
Ohio          False           Ohio           True      
Oregon        False           Oregon         True      
Texas         False           Texas          True      
dtype: bool                   dtype: bool 

Series also has these as instance methods:

In [27]: obj4.isnull()
Out[27]: 
California     True
Ohio          False
Oregon        False
Texas         False
dtype: bool

I discuss working with missing data in more detail later in this chapter.

A critical Series feature for many applications is that it automatically aligns differently-
indexed data in arithmetic operations:

In [28]: obj3          In [29]: obj4      
Out[28]:               Out[29]:           
Ohio      35000        California      NaN
Oregon    16000        Ohio          35000
Texas     71000        Oregon        16000
Utah       5000        Texas         71000
dtype: int64           dtype: float64     
                                          
In [30]: obj3 + obj4
Out[30]: 
California       NaN
Ohio           70000

110 | Chapter 5: Getting Started with pandas

When only passing a dict, the index in the resulting Series will have the dict’s keys in
sorted order.

In [22]: states = ['California', 'Ohio', 'Oregon', 'Texas']

In [23]: obj4 = Series(sdata, index=states)

In [24]: obj4
Out[24]: 
California      NaN
Ohio          35000
Oregon        16000
Texas         71000
dtype: float64

In this case, 3 values found in sdata were placed in the appropriate locations, but since
no value for 'California' was found, it appears as NaN (not a number) which is con-
sidered in pandas to mark missing or NA values. I will use the terms “missing” or “NA”
to refer to missing data. The isnull and notnull functions in pandas should be used to
detect missing data:

In [25]: pd.isnull(obj4)      In [26]: pd.notnull(obj4)
Out[25]:                      Out[26]:                 
California     True           California    False      
Ohio          False           Ohio           True      
Oregon        False           Oregon         True      
Texas         False           Texas          True      
dtype: bool                   dtype: bool 

Series also has these as instance methods:

In [27]: obj4.isnull()
Out[27]: 
California     True
Ohio          False
Oregon        False
Texas         False
dtype: bool

I discuss working with missing data in more detail later in this chapter.

A critical Series feature for many applications is that it automatically aligns differently-
indexed data in arithmetic operations:

In [28]: obj3          In [29]: obj4      
Out[28]:               Out[29]:           
Ohio      35000        California      NaN
Oregon    16000        Ohio          35000
Texas     71000        Oregon        16000
Utah       5000        Texas         71000
dtype: int64           dtype: float64     
                                          
In [30]: obj3 + obj4
Out[30]: 
California       NaN
Ohio           70000

110 | Chapter 5: Getting Started with pandas

Oregon         32000
Texas         142000
Utah             NaN
dtype: float64

Data alignment features are addressed as a separate topic.

Both the Series object itself and its index have a name attribute, which integrates with
other key areas of pandas functionality:

In [31]: obj4.name = 'population'

In [32]: obj4.index.name = 'state'

In [33]: obj4
Out[33]: 
state
California      NaN
Ohio          35000
Oregon        16000
Texas         71000
Name: population, dtype: float64

A Series’s index can be altered in place by assignment:

In [34]: obj.index = ['Bob', 'Steve', 'Jeff', 'Ryan']

In [35]: obj
Out[35]: 
Bob      4
Steve    7
Jeff    -5
Ryan     3
dtype: int64

DataFrame
A DataFrame represents a tabular, spreadsheet-like data structure containing an or-
dered collection of columns, each of which can be a different value type (numeric,
string, boolean, etc.). The DataFrame has both a row and column index; it can be
thought of as a dict of Series (one for all sharing the same index). Compared with other
such DataFrame-like structures you may have used before (like R’s data.frame), row-
oriented and column-oriented operations in DataFrame are treated roughly symmet-
rically. Under the hood, the data is stored as one or more two-dimensional blocks rather
than a list, dict, or some other collection of one-dimensional arrays. The exact details
of DataFrame’s internals are far outside the scope of this book.

While DataFrame stores the data internally in a two-dimensional for-
mat, you can easily represent much higher-dimensional data in a tabular
format using hierarchical indexing, a subject of a later section and a key
ingredient in many of the more advanced data-handling features in pan-
das.
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Data Frame
• A dictionary of Series (labels for each series) 
• A spreadsheet with row keys (the index) and column headers 
• Has an index shared with each series 
• Allows easy reference to any cell 
• df = DataFrame({'state': ['Ohio', 'Ohio', 'Ohio', 'Nevada'], 
                'year': [2000, 2001, 2002, 2001], 
                'pop': [1.5, 1.7, 3.6, 2.4]}) 

• Index is automatically assigned just as with a series but can be passed in as 
well via index kwarg 

• Can reassign column names by passing columns kwarg
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Table 5-1. Possible data inputs to DataFrame constructor

Type Notes

2D ndarray A matrix of data, passing optional row and column labels

dict of arrays, lists, or tuples Each sequence becomes a column in the DataFrame. All sequences must be the same length.

NumPy structured/record array Treated as the “dict of arrays” case

dict of Series Each value becomes a column. Indexes from each Series are unioned together to form the
result’s row index if no explicit index is passed.

dict of dicts Each inner dict becomes a column. Keys are unioned to form the row index as in the “dict of
Series” case.

list of dicts or Series Each item becomes a row in the DataFrame. Union of dict keys or Series indexes become the
DataFrame’s column labels

List of lists or tuples Treated as the “2D ndarray” case

Another DataFrame The DataFrame’s indexes are used unless different ones are passed

NumPy MaskedArray Like the “2D ndarray” case except masked values become NA/missing in the DataFrame result

Index Objects
pandas’s Index objects are responsible for holding the axis labels and other metadata
(like the axis name or names). Any array or other sequence of labels used when con-
structing a Series or DataFrame is internally converted to an Index:

In [67]: obj = Series(range(3), index=['a', 'b', 'c'])

In [68]: index = obj.index

In [69]: index
Out[69]: Index([u'a', u'b', u'c'], dtype='object')

In [70]: index[1:]
Out[70]: Index([u'b', u'c'], dtype='object')

Index objects are immutable and thus can’t be modified by the user:

In [71]: index[1] = 'd'
---------------------------------------------------------------------------
TypeError                                 Traceback (most recent call last)
<ipython-input-71-676fdeb26a68> in <module>()
----> 1 index[1] = 'd'
/home/phillip/miniconda3/envs/conda2/lib/python2.7/site-packages/pandas/core/
base.pyc in _disabled(self, *args, **kwargs)
    177         """This method will not function because object is immutable."""
    178         raise TypeError("'%s' does not support mutable operations." %
--> 179                         self.__class__)
    180 
    181     __setitem__ = __setslice__ = __delitem__ = __delslice__ = _disabled
TypeError: '<class 'pandas.core.index.Index'>' does not support mutable operations.
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DataFrame Access and Manipulation
• df.values → 2D NumPy array 

• Accessing a column: 
- df["<column>"] 

- df.<column> 

- Both return Series 
- Dot syntax only works when the column is a valid identifier 

• Assigning to a column: 
- df["<column>"] = <scalar> # all cells set to same value 

- df["<column>"] = <array>  # values set in order 

- df["<column>"] = <series> # values set according to match 
                          # between df and series indexes
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DataFrame Index
• Similar to index for Series 
• Immutable 
• Can be shared with multiple structures (DataFrames or Series) 
• in operator works with: 'Ohio' in df.index 
• Can choose new index column(s) with set_index() 
• reindex creates a new object with the data conformed to new index 

- obj2 = obj.reindex(['a', 'b', 'c', 'd', 'e']) 

- can fill in missing values in different ways
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Dropping entries
• Can drop one or more entries 
• Series: 

- new_obj = obj.drop('c') 
- new_obj = obj.drop(['d', 'c']) 

• Data Frames: 
- axis keyword defines which axis to drop (default 0) 
- axis=0 → rows, axis=1→ columns 
- axis = 'columns'

18D. Koop, CSCI 503, Spring 2021



Indexing
• Same as with NumPy arrays but can use Series's index labels 
• Slicing with labels: NumPy is exclusive, Pandas is inclusive! 

- s = Series(np.arange(4)) 
s[0:2] # gives two values like numpy 

- s = Series(np.arange(4), index=['a', 'b', 'c', 'd']) 
s['a':'c'] # gives three values, not two! 

• Obtaining data subsets 
- []: get columns by label 
- loc: get rows/cols by label 
- iloc: get rows/cols by position (integer index) 

- For single cells (scalars), also have at and iat
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Indexing
• s = Series(np.arange(4.), index=[4,3,2,1]) 

• s[3] 

• s.loc[3] 

• s.iloc[3] 

• s2 = pd.Series(np.arange(4), index=['a','b','c','d']) 

• s2[3]
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Indexing in Data Frames
• df['col1'] # a column 

• df.loc['Ohio'] # a row 

• df.loc['Ohio','col1'] # the cell 

• Multiple columns use a list inside the brackets 
- df[['col1','col2']] 
- Can nest these in loc, too: df.loc['Ohio',['col1','col2']]
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Filtering
• Same as with numpy arrays but allows use of column-based criteria 

- data[data < 5] = 0 

- data[data['three'] > 5] 

• data < 5 → boolean data frame, can be used to select specific elements 
• Multiple criteria, use &, |, and ~; remember parentheses! 

- data[(data['three'] > 5) & (data['two'] < 10)]
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Arithmetic
• Add, subtract, multiply, and divide are element-wise like numpy 
• …but use labels to align 
• …and missing labels lead to NaN (not a number) values 

• also have .add, .subtract, … that allow fill_value argument 
• obj3.add(obj4, fill_value=0)
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When only passing a dict, the index in the resulting Series will have the dict’s keys in
sorted order.

In [22]: states = ['California', 'Ohio', 'Oregon', 'Texas']

In [23]: obj4 = Series(sdata, index=states)

In [24]: obj4
Out[24]: 
California      NaN
Ohio          35000
Oregon        16000
Texas         71000
dtype: float64

In this case, 3 values found in sdata were placed in the appropriate locations, but since
no value for 'California' was found, it appears as NaN (not a number) which is con-
sidered in pandas to mark missing or NA values. I will use the terms “missing” or “NA”
to refer to missing data. The isnull and notnull functions in pandas should be used to
detect missing data:

In [25]: pd.isnull(obj4)      In [26]: pd.notnull(obj4)
Out[25]:                      Out[26]:                 
California     True           California    False      
Ohio          False           Ohio           True      
Oregon        False           Oregon         True      
Texas         False           Texas          True      
dtype: bool                   dtype: bool 

Series also has these as instance methods:

In [27]: obj4.isnull()
Out[27]: 
California     True
Ohio          False
Oregon        False
Texas         False
dtype: bool

I discuss working with missing data in more detail later in this chapter.

A critical Series feature for many applications is that it automatically aligns differently-
indexed data in arithmetic operations:
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Out[28]:               Out[29]:           
Ohio      35000        California      NaN
Oregon    16000        Ohio          35000
Texas     71000        Oregon        16000
Utah       5000        Texas         71000
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In [30]: obj3 + obj4
Out[30]: 
California       NaN
Ohio           70000
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Oregon         32000
Texas         142000
Utah             NaN
dtype: float64

Data alignment features are addressed as a separate topic.

Both the Series object itself and its index have a name attribute, which integrates with
other key areas of pandas functionality:

In [31]: obj4.name = 'population'

In [32]: obj4.index.name = 'state'

In [33]: obj4
Out[33]: 
state
California      NaN
Ohio          35000
Oregon        16000
Texas         71000
Name: population, dtype: float64

A Series’s index can be altered in place by assignment:

In [34]: obj.index = ['Bob', 'Steve', 'Jeff', 'Ryan']

In [35]: obj
Out[35]: 
Bob      4
Steve    7
Jeff    -5
Ryan     3
dtype: int64

DataFrame
A DataFrame represents a tabular, spreadsheet-like data structure containing an or-
dered collection of columns, each of which can be a different value type (numeric,
string, boolean, etc.). The DataFrame has both a row and column index; it can be
thought of as a dict of Series (one for all sharing the same index). Compared with other
such DataFrame-like structures you may have used before (like R’s data.frame), row-
oriented and column-oriented operations in DataFrame are treated roughly symmet-
rically. Under the hood, the data is stored as one or more two-dimensional blocks rather
than a list, dict, or some other collection of one-dimensional arrays. The exact details
of DataFrame’s internals are far outside the scope of this book.

While DataFrame stores the data internally in a two-dimensional for-
mat, you can easily represent much higher-dimensional data in a tabular
format using hierarchical indexing, a subject of a later section and a key
ingredient in many of the more advanced data-handling features in pan-
das.
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Arithmetic between DataFrames and Series
• Broadcasting: e.g. apply single row operation across all rows 
• Example: 

• To broadcast over columns, use methods (.add, …)
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Table 5-7. Flexible arithmetic methods

Method Description

add Method for addition (+)

sub Method for subtraction (-)

div Method for division (/)

mul Method for multiplication (*)

Operations between DataFrame and Series
As with NumPy arrays, arithmetic between DataFrame and Series is well-defined. First,
as a motivating example, consider the difference between a 2D array and one of its rows:

In [142]: arr = np.arange(12.).reshape((3, 4))

In [143]: arr
Out[143]: 
array([[  0.,   1.,   2.,   3.],
       [  4.,   5.,   6.,   7.],
       [  8.,   9.,  10.,  11.]])

In [144]: arr[0]
Out[144]: array([ 0.,  1.,  2.,  3.])

In [145]: arr - arr[0]
Out[145]: 
array([[ 0.,  0.,  0.,  0.],
       [ 4.,  4.,  4.,  4.],
       [ 8.,  8.,  8.,  8.]])

This is referred to as broadcasting and is explained in more detail in Chapter 12. Op-
erations between a DataFrame and a Series are similar:

In [146]: frame = DataFrame(np.arange(12.).reshape((4, 3)), columns=list('bde'),
   .....:                   index=['Utah', 'Ohio', 'Texas', 'Oregon'])

In [147]: series = frame.ix[0]

In [148]: frame          In [149]: series          
Out[148]:                Out[149]:                 
        b   d   e        b    0                    
Utah    0   1   2        d    1                    
Ohio    3   4   5        e    2                    
Texas   6   7   8        Name: Utah, dtype: float64
Oregon  9  10  11                                  

By default, arithmetic between DataFrame and Series matches the index of the Series
on the DataFrame's columns, broadcasting down the rows:

In [150]: frame - series
Out[150]: 
        b  d  e
Utah    0  0  0
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Ohio    3  3  3
Texas   6  6  6
Oregon  9  9  9

If an index value is not found in either the DataFrame’s columns or the Series’s index,
the objects will be reindexed to form the union:

In [151]: series2 = Series(range(3), index=['b', 'e', 'f'])

In [152]: frame + series2
Out[152]: 
        b   d   e   f
Utah    0 NaN   3 NaN
Ohio    3 NaN   6 NaN
Texas   6 NaN   9 NaN
Oregon  9 NaN  12 NaN

If you want to instead broadcast over the columns, matching on the rows, you have to
use one of the arithmetic methods. For example:

In [153]: series3 = frame['d']

In [154]: frame      In [155]: series3      
Out[154]:            Out[155]:              
        b   d   e    Utah       1           
Utah    0   1   2    Ohio       4           
Ohio    3   4   5    Texas      7           
Texas   6   7   8    Oregon    10           
Oregon  9  10  11    Name: d, dtype: float64
                                            
In [156]: frame.sub(series3, axis=0)
Out[156]: 
        b  d  e
Utah   -1  0  1
Ohio   -1  0  1
Texas  -1  0  1
Oregon -1  0  1

The axis number that you pass is the axis to match on. In this case we mean to match
on the DataFrame’s row index and broadcast across.

Function application and mapping
NumPy ufuncs (element-wise array methods) work fine with pandas objects:

In [157]: frame = DataFrame(np.random.randn(4, 3), columns=list('bde'),
   .....:                   index=['Utah', 'Ohio', 'Texas', 'Oregon'])

In [158]: frame                           In [159]: np.abs(frame)             
Out[158]:                                 Out[159]:                           
               b         d         e                     b         d         e
Utah   -0.204708  0.478943 -0.519439      Utah    0.204708  0.478943  0.519439
Ohio   -0.555730  1.965781  1.393406      Ohio    0.555730  1.965781  1.393406
Texas   0.092908  0.281746  0.769023      Texas   0.092908  0.281746  0.769023
Oregon  1.246435  1.007189 -1.296221      Oregon  1.246435  1.007189  1.296221
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If an index value is not found in either the DataFrame’s columns or the Series’s index,
the objects will be reindexed to form the union:

In [151]: series2 = Series(range(3), index=['b', 'e', 'f'])

In [152]: frame + series2
Out[152]: 
        b   d   e   f
Utah    0 NaN   3 NaN
Ohio    3 NaN   6 NaN
Texas   6 NaN   9 NaN
Oregon  9 NaN  12 NaN

If you want to instead broadcast over the columns, matching on the rows, you have to
use one of the arithmetic methods. For example:

In [153]: series3 = frame['d']

In [154]: frame      In [155]: series3      
Out[154]:            Out[155]:              
        b   d   e    Utah       1           
Utah    0   1   2    Ohio       4           
Ohio    3   4   5    Texas      7           
Texas   6   7   8    Oregon    10           
Oregon  9  10  11    Name: d, dtype: float64
                                            
In [156]: frame.sub(series3, axis=0)
Out[156]: 
        b  d  e
Utah   -1  0  1
Ohio   -1  0  1
Texas  -1  0  1
Oregon -1  0  1

The axis number that you pass is the axis to match on. In this case we mean to match
on the DataFrame’s row index and broadcast across.

Function application and mapping
NumPy ufuncs (element-wise array methods) work fine with pandas objects:

In [157]: frame = DataFrame(np.random.randn(4, 3), columns=list('bde'),
   .....:                   index=['Utah', 'Ohio', 'Texas', 'Oregon'])

In [158]: frame                           In [159]: np.abs(frame)             
Out[158]:                                 Out[159]:                           
               b         d         e                     b         d         e
Utah   -0.204708  0.478943 -0.519439      Utah    0.204708  0.478943  0.519439
Ohio   -0.555730  1.965781  1.393406      Ohio    0.555730  1.965781  1.393406
Texas   0.092908  0.281746  0.769023      Texas   0.092908  0.281746  0.769023
Oregon  1.246435  1.007189 -1.296221      Oregon  1.246435  1.007189  1.296221
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Sorting by Index (sort_index)
• Sort by index (lexicographical): 

• DataFrame sorting: 

• axis controls sort rows (0) vs. sort columns (1)
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Sorting and ranking
Sorting a data set by some criterion is another important built-in operation. To sort
lexicographically by row or column index, use the sort_index method, which returns
a new, sorted object:

In [168]: obj = Series(range(4), index=['d', 'a', 'b', 'c'])

In [169]: obj.sort_index()
Out[169]: 
a    1
b    2
c    3
d    0
dtype: int64

With a DataFrame, you can sort by index on either axis:

In [170]: frame = DataFrame(np.arange(8).reshape((2, 4)), index=['three', 'one'],
   .....:                   columns=['d', 'a', 'b', 'c'])

In [171]: frame.sort_index()        In [172]: frame.sort_index(axis=1)
Out[171]:                           Out[172]:                         
       d  a  b  c                          a  b  c  d                 
one    4  5  6  7                   three  1  2  3  0                 
three  0  1  2  3                   one    5  6  7  4

The data is sorted in ascending order by default, but can be sorted in descending order,
too:

In [173]: frame.sort_index(axis=1, ascending=False)
Out[173]: 
       d  c  b  a
three  0  3  2  1
one    4  7  6  5

To sort a Series by its values, use its order method:

In [174]: obj = Series([4, 7, -3, 2])

In [175]: obj.order()
Out[175]: 
2   -3
3    2
0    4
1    7
dtype: int64

Any missing values are sorted to the end of the Series by default:

In [176]: obj = Series([4, np.nan, 7, np.nan, -3, 2])

In [177]: obj.order()
Out[177]: 
4    -3
5     2
0     4
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Sorting by Value (sort_values)
• sort_values method on series 

- obj.sort_values() 

• Missing values (NaN) are at the end by default (na_position controls, can be 
first) 

• sort_values on DataFrame: 
- df.sort_values(<list-of-columns>) 

- df.sort_values(by=['a', 'b']) 

- Can also use axis=1 to sort by index labels
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Ranking
• rank() method: 

• ascending and method  arguments: 

• Works on data frames, too
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2     7
1   NaN
3   NaN
dtype: float64

On DataFrame, you may want to sort by the values in one or more columns. To do so,
pass one or more column names to the by option:

In [178]: frame = DataFrame({'b': [4, 7, -3, 2], 'a': [0, 1, 0, 1]})

In [179]: frame        In [180]: frame.sort_index(by='b')
Out[179]:              Out[180]:                         
   a  b                   a  b                           
0  0  4                2  0 -3                           
1  1  7                3  1  2                           
2  0 -3                0  0  4                           
3  1  2                1  1  7 

To sort by multiple columns, pass a list of names:

In [181]: frame.sort_index(by=['a', 'b'])
Out[181]: 
   a  b
2  0 -3
0  0  4
3  1  2
1  1  7

Ranking is closely related to sorting, assigning ranks from one through the number of
valid data points in an array. It is similar to the indirect sort indices produced by 
numpy.argsort, except that ties are broken according to a rule. The rank methods for
Series and DataFrame are the place to look; by default rank breaks ties by assigning
each group the mean rank:

In [182]: obj = Series([7, -5, 7, 4, 2, 0, 4])

In [183]: obj.rank()
Out[183]: 
0    6.5
1    1.0
2    6.5
3    4.5
4    3.0
5    2.0
6    4.5
dtype: float64

Ranks can also be assigned according to the order they’re observed in the data:

In [184]: obj.rank(method='first')
Out[184]: 
0    6
1    1
2    7
3    4
4    3
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5    2
6    5
dtype: float64

Naturally, you can rank in descending order, too:

In [185]: obj.rank(ascending=False, method='max')
Out[185]: 
0    2
1    7
2    2
3    4
4    5
5    6
6    4
dtype: float64

See Table 5-8 for a list of tie-breaking methods available. DataFrame can compute ranks
over the rows or the columns:

In [186]: frame = DataFrame({'b': [4.3, 7, -3, 2], 'a': [0, 1, 0, 1],
   .....:                    'c': [-2, 5, 8, -2.5]})

In [187]: frame        In [188]: frame.rank(axis=1)
Out[187]:              Out[188]:                   
   a    b    c            a  b  c                  
0  0  4.3 -2.0         0  2  3  1                  
1  1  7.0  5.0         1  1  3  2                  
2  0 -3.0  8.0         2  2  1  3                  
3  1  2.0 -2.5         3  2  3  1

Table 5-8. Tie-breaking methods with rank

Method Description

'average' Default: assign the average rank to each entry in the equal group.

'min' Use the minimum rank for the whole group.

'max' Use the maximum rank for the whole group.

'first' Assign ranks in the order the values appear in the data.

Axis indexes with duplicate values
Up until now all of the examples I’ve showed you have had unique axis labels (index
values). While many pandas functions (like reindex) require that the labels be unique,
it’s not mandatory. Let’s consider a small Series with duplicate indices:

In [189]: obj = Series(range(5), index=['a', 'a', 'b', 'b', 'c'])

In [190]: obj
Out[190]: 
a    0
a    1
b    2
b    3
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Statistics
• sum: column sums (axis=1 gives sums over rows) 
• missing values are excluded unless the whole slice is NaN 
• idxmax, idxmin are like argmax, argmin (return index) 
• describe: shortcut for easy stats!
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    one  two
a  1.40  NaN
b  8.50 -4.5
c   NaN  NaN
d  9.25 -5.8

Another type of method is neither a reduction nor an accumulation. describe is one
such example, producing multiple summary statistics in one shot:

In [204]: df.describe()
Out[204]: 
            one       two
count  3.000000  2.000000
mean   3.083333 -2.900000
std    3.493685  2.262742
min    0.750000 -4.500000
25%    1.075000 -3.700000
50%    1.400000 -2.900000
75%    4.250000 -2.100000
max    7.100000 -1.300000

On non-numeric data, describe produces alternate summary statistics:

In [205]: obj = Series(['a', 'a', 'b', 'c'] * 4)

In [206]: obj.describe()
Out[206]: 
count     16
unique     3
top        a
freq       8
dtype: object

See Table 5-10 for a full list of summary statistics and related methods.

Table 5-10. Descriptive and summary statistics

Method Description

count Number of non-NA values

describe Compute set of summary statistics for Series or each DataFrame column

min, max Compute minimum and maximum values

argmin, argmax Compute index locations (integers) at which minimum or maximum value obtained, respectively

idxmin, idxmax Compute index values at which minimum or maximum value obtained, respectively

quantile Compute sample quantile ranging from 0 to 1

sum Sum of values

mean Mean of values

median Arithmetic median (50% quantile) of values

mad Mean absolute deviation from mean value

var Sample variance of values

std Sample standard deviation of values
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Method Description

skew Sample skewness (3rd moment) of values

kurt Sample kurtosis (4th moment) of values

cumsum Cumulative sum of values

cummin, cummax Cumulative minimum or maximum of values, respectively

cumprod Cumulative product of values

diff Compute 1st arithmetic difference (useful for time series)

pct_change Compute percent changes

Correlation and Covariance
Some summary statistics, like correlation and covariance, are computed from pairs of
arguments. Let’s consider some DataFrames of stock prices and volumes obtained from
Yahoo! Finance:

import pandas.io.data as web

all_data = {}
for ticker in ['AAPL', 'IBM', 'MSFT', 'GOOG']:
    all_data[ticker] = web.get_data_yahoo(ticker)

price = DataFrame({tic: data['Adj Close']
                   for tic, data in all_data.iteritems()})
volume = DataFrame({tic: data['Volume']
                    for tic, data in all_data.iteritems()})

I now compute percent changes of the prices:

In [208]: returns = price.pct_change()

In [209]: returns.tail()
Out[209]: 
                AAPL      GOOG       IBM      MSFT
Date                                              
2014-07-07  0.020632 -0.004241 -0.002599  0.004545
2014-07-08 -0.006460 -0.019167 -0.004361 -0.005001
2014-07-09  0.000420  0.008738  0.006410 -0.002633
2014-07-10 -0.003669 -0.008645 -0.003821  0.000480
2014-07-11  0.001894  0.014148  0.001598  0.009595

The corr method of Series computes the correlation of the overlapping, non-NA,
aligned-by-index values in two Series. Relatedly, cov computes the covariance:

In [210]: returns.MSFT.corr(returns.IBM)
Out[210]: 0.51360438136345077

In [211]: returns.MSFT.cov(returns.IBM)
Out[211]: 8.4825099973219876e-05

DataFrame’s corr and cov methods, on the other hand, return a full correlation or
covariance matrix as a DataFrame, respectively:
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Unique Values and Value Counts
• unique() returns an array with only the unique values (no index) 

- s = Series(['c','a','d','a','a','b','b','c','c']) 
s.unique() # array(['c', 'a', 'd', 'b']) 

• Also nunique() to count number of unique entries 
• Data Frames use drop_duplicates 
• value_counts returns a Series with index frequencies: 

- s.value_counts() # Series({'c': 3,'a': 3,'b': 2,'d': 1})
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1    False
2     True
3    False
dtype: bool

I do not claim that pandas’s NA representation is optimal, but it is simple and reason-
ably consistent. It’s the best solution, with good all-around performance characteristics
and a simple API, that I could concoct in the absence of a true NA data type or bit
pattern in NumPy’s data types. Ongoing development work in NumPy may change this
in the future.

Table 5-12. NA handling methods

Argument Description

dropna Filter axis labels based on whether values for each label have missing data, with varying thresholds for how much
missing data to tolerate.

fillna Fill in missing data with some value or using an interpolation method such as 'ffill' or 'bfill'.

isnull Return like-type object containing boolean values indicating which values are missing / NA.

notnull Negation of isnull.

Filtering Out Missing Data
You have a number of options for filtering out missing data. While doing it by hand is
always an option, dropna can be very helpful. On a Series, it returns the Series with only
the non-null data and index values:

In [233]: from numpy import nan as NA

In [234]: data = Series([1, NA, 3.5, NA, 7])

In [235]: data.dropna()
Out[235]: 
0    1.0
2    3.5
4    7.0
dtype: float64

Naturally, you could have computed this yourself by boolean indexing:

In [236]: data[data.notnull()]
Out[236]: 
0    1.0
2    3.5
4    7.0
dtype: float64

With DataFrame objects, these are a bit more complex. You may want to drop rows
or columns which are all NA or just those containing any NAs. dropna by default drops
any row containing a missing value:
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Reading & Writing Data in Pandas
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Format 
Type

Data Description Reader Writer
text CSV read_csv to_csv
text Fixed-Width Text File read_fwf
text JSON read_json to_json
text HTML read_html to_html
text Local clipboard read_clipboard to_clipboard

MS Excel read_excel to_excel
binary OpenDocument read_excel
binary HDF5 Format read_hdf to_hdf
binary Feather Format read_feather to_feather
binary Parquet Format read_parquet to_parquet
binary ORC Format read_orc
binary Msgpack read_msgpack to_msgpack
binary Stata read_stata to_stata
binary SAS read_sas
binary SPSS read_spss
binary Python Pickle Format read_pickle to_pickle
SQL SQL read_sql to_sql
SQL Google BigQuery read_gbq to_gbq

https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html
https://en.wikipedia.org/wiki/Comma-separated_values
https://www.json.org/
https://en.wikipedia.org/wiki/HTML
https://en.wikipedia.org/wiki/Microsoft_Excel
http://www.opendocumentformat.org/
https://support.hdfgroup.org/HDF5/whatishdf5.html
https://github.com/wesm/feather
https://parquet.apache.org/
https://https//orc.apache.org/
https://msgpack.org/index.html
https://en.wikipedia.org/wiki/Stata
https://en.wikipedia.org/wiki/SAS_(software)
https://en.wikipedia.org/wiki/SPSS
https://docs.python.org/3/library/pickle.html
https://en.wikipedia.org/wiki/SQL
https://en.wikipedia.org/wiki/BigQuery


read_csv
• Convenient method to read csv files 
• Lots of different options to help get data into the desired format 
• Basic: df = pd.read_csv(fname) 
• Parameters: 

- path: where to read the data from  
- sep (or delimiter): the delimiter (',', ' ', '\t', '\s+') 
- header: if None, no header 
- index_col: which column to use as the row index 
- names: list of header names (e.g. if the file has no header) 
- skiprows: number of list of lines to skip
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Writing CSV data with pandas
• Basic: df.to_csv(<fname>) 
• Change delimiter with sep kwarg: 

- df.to_csv('example.dsv', sep='|') 

• Change missing value representation 
- df.to_csv('example.dsv', na_rep='NULL') 

• Don't write row or column labels: 
- df.to_csv('example.csv', index=False, header=False) 

• Series may also be written to csv
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inplace
• Generally, when we modify a data frame, we reassign: 

- rdf = df.reset_index() 

- This is usually very efficient 
- Allows for method chaining 

• There are versions where you can do this "inplace": 
- df.reset_index(inplace=True) 

- This means no reassignment, but it isn't usually any faster nor better 
- Sometimes still creates a copy 
- Will likely be deprecated
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Documentation
• pandas documentation is pretty good 
• Lots of recipes on stackoverflow for particular data manipulations/queries 
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Food Inspections Example
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