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Dealing with Errors
• Can explicitly check for errors at each step 
- Check for division by zero 
- Check for invalid parameter value (e.g. string instead of int) 

• Sometimes all of this gets in the way and can't be addressed succinctly 
- Too many potential errors to check 
- Cannot handle groups of the same type of errors together 

• Allow programmer to determine when and how to handle issues 
- Allow things to go wrong and handle them instead 
- Allow errors to be propagated and addressed once
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Advantages of Exceptions
• Separate error-handling code from "regular" code 
• Allows propagation of errors up the call stack 
• Errors can be grouped and differentiated
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Try-Except
• The try statement has the following form: 
try: 
   <body> 
except <ErrorType>*: 
   <handler> 

• When Python encounters a try statement, it attempts to execute the 
statements inside the body. 

• If there is no error, control passes to the next statement after the try…
except (unless else or finally clauses) 

• Note: except not catch
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Exception Granularity
• If you catch any exception using a base class near the top of the hierarchy, 

you may be masking code errors 
• try: 
    c, d = a / b 
except Exception: 
    c, d = 0, 0 

• Remember Exception catches any exception is an instance of Exception 
• Catches TypeError: cannot unpack non-iterable float object  
• Better to have more granular (specific) exceptions! 
• We don't want to catch the TypeError because this is a programming error 

not a runtime error
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Exception Locality
• try: 
    fname = 'missing-file.dat' 
    with open(fname) as f: 
        lines = f.readlines() 
except OSError: 
    print(f"An error occurred reading {fname}") 
try: 
    out_fname = 'output-file.dat' 
    with open('output-file.dat', 'w') as fout: 
        fout.write("Testing") 
except OSError: 
    print(f"An error occurred writing {out_fname}")
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Multiple Except Clauses
• Function like an if/elif sequence 
• Checked in order so put more granular exceptions earlier! 
• try: 
    fname = 'missing-file.dat' 
    with open(fname) as f: 
        lines = f.readlines() 
    out_fname = 'output-file.dat' 
    with open('output-file.dat', 'w') as fout: 
        fout.write("Testing") 
except FileNotFoundError: 
    print(f"File {fname} does not exist") 
except OSError: 
    print("An error occurred processing files")
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Handling Multiple Exceptions at Once
• Can process multiple exceptions with one clause, use tuple of classes 
• Allows some specificity but without repeating 
• try: 
    fname = 'missing-file.dat' 
    with open(fname) as f: 
        lines = f.readlines() 
    out_fname = 'output-file.dat' 
    with open('output-file.dat', 'w') as fout: 
        fout.write("Testing") 
except (FileNotFoundError, PermissionError): 
    print("An error occurred processing files")
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Exception Objects
• Exceptions themselves are a type of object. 
• If you follow the error type with an identifier in an except clause, Python will 

assign that identifier the actual exception object. 
• Sometimes exceptions encode information that is useful for handling 
• try: 
    fname = 'missing-file.dat' 
    with open(fname) as f: 
        lines = f.readlines() 
    out_fname = 'output-file.dat' 
    with open('output-file.dat', 'w') as fout: 
        fout.write("Testing") 
except OSError as e: 
    print(e.errno, e.filename, e)
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Else & Finally
• else: Code that executes if no exception occurs 
• finally: Code that always runs, regardless of whether there is an exception 
• b = 3 
a = 0 
try: 
    c = b / a 
except ZeroDivisionError: 
    print("Division failed") 
    c = 0 
else: 
    print("Division succeeded", c) 
finally: 
    print("This always runs")
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Raising Exceptions
• Create an exception and raise it using the raise keyword 
• Pass a string that provides some detail 
• Example: raise Exception("This did not work correctly") 
• Try to find a exception class: 

- ValueError: if an argument doesn't fit the functions expectations 
- NotImplementedError: if a method isn't implemented (e.g. abstract cls) 

• Be specific in the error message, state actual values 
• Can also subclass from existing exception class, but check if existing 

exception works first 
• Some packages create their own base exception class (RequestException)

11D. Koop, CSCI 503, Spring 2021



Making Sense of Exceptions
• When code (e.g. a cell) crashes, read the traceback: 
• ZeroDivisionError          Traceback (most recent call last) 
<ipython-input-58-488e97ad7d74> in <module> 
      4     return divide(a+b, a-b) 
      5 for i in range(4): 
----> 6     process(3, i) 
<ipython-input-58-488e97ad7d74> in process(a, b) 
      3         return c / d 
----> 4     return divide(a+b, a-b) 
      5 for i in range(4): 
<ipython-input-58-488e97ad7d74> in divide(c, d) 
      2     def divide(c, d): 
----> 3         return c / d 
      4     return divide(a+b, a-b) 
ZeroDivisionError: division by zero
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Assignment 6
• Object-oriented Programming 
• Track University Enrollment 
• Methods for checking conflicts (e.g. disallow student to have overlapping 

courses, take too many credits) 
• Methods for changing course time (check the new time works for everyone) 
• Sample code is meant to be run in different cells! 
• Due Friday
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Debugging
• print statements 
• logging library 
• pdb 
• Extensions for IDEs (e.g. PyCharm) 
• JupyterLab Debugger Support
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Print Statements
• Just print the values or other information about identifiers: 
• def my_function(a, b): 
    print(a, b) 
    print(b - a == 0) 
    return a + b 

• Note that we need to remember what is being printed 
• Can add this to print call, or use f-strings with trailing = which causes the 

name and value of the variable to be printed 
• def my_function(a, b): 
    print(f"{a=} {b=} {b - a == 0}") 
    return a + b
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Print Problems
• Have to uncomment/comment 
• Have to remember to get rid of (or comment out) debugging statements 

when publishing code 
• Print can dump a lot of text (slows down notebooks) 
• Can try to be smarter: 

- if i % 100 == 0: 
    print(i, f"{current_output=}") 

- do_print = value == 42 
if do_print: 
    print(f"{a=} {current_output=}")
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Logging Library
• Allows different levels of output (e.g. DEBUG, INFO, WARNING, ERROR 

CRITICAL) 
• Can output to a file as well as stdout/stderr 
• Can configure to suppress certain levels or filter messages 
• import logging 
def my_function(a,b): 
    logging.debug(f"{a=} {b=} {b-a == 0}") 
    return a + b 
my_function(3, 5) 

• This doesn't work in notebooks…
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Logging Library
• Need to set default level (e.g. DEBUG) 
• For notebooks, best to define own logger and set level 
• import logging 
logger = logging.Logger('my-logger') 
logger.setLevel(logging.DEBUG) 
def my_function(a,b): 
    logger.debug(f"{a=} {b=} {b-a == 0}") 
    return a + b 
my_function(3, 5) 

• Prints on stderr, can set to stdout via: 
• import sys 
logging.basicConfig(stream=sys.stdout, level=logging.DEBUG)
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Python Debugger (pdb)
• Debuggers offer the ability to inspect and interact with code as it is running 
- Define breakpoints as places to stop code and enter the debugger 
- Commands to inspect variables and step through code 
- Different types of steps (into, over, continue) 
- Can have multiple breakpoints in a piece of code 

• There are a number of debuggers like those built into IDEs (e.g. PyCharm) 
• pdb is standard Python, also an ipdb variant for IPython/notebooks
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Python Debugger
• Post-mortem inspection: 
- In the notebook, use %debug in a new cell to inspect at the line that raised 

the exception 
• Can have this happen all the time using %pdb magic 
• Brings up a new panel that allows debugging interactions 

- In a script, run the script using pdb: 
• python -m pdb my_script.py 
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Python Debugger
• Breakpoints 
- To set a breakpoint, simply add a breakpoint() call in the code 
- Before Python 3.7, this required import pdb; pdb.set_trace() 
- Run the cell/script as normal and pdb will start when it hits the breakpoint 
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Python Debugger Commands
• p [print expressions]: Print expressions, comma separated 
• n [step over]: continue until next line in current function 
• s [step into]: stop at next line of code (same function or one being called) 
• c [continue]: continue execution until next breakpoint 
• l [list code]: list source code (ipdb does this already), also ll (fewer lines) 
• b [breakpoints]: list or set new breakpoint (with line number) 
• w [print stack trace]: Prints the stack (like what notebook shows during 

traceback), u and d commands move up/down the stack 
• q [quit]: quit 
• h [help]: help (there are many other commands)
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Jupyter Debugging Support
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Jupyter Debugging Support
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How do you test code?
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Testing
• If statements 
• Assert statements 
• Unit Testing 
• Integration Testing
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Testing via Print/If Statements
• Can make sure that types or values satisfy expectations 
• if not isinstance(a, str): 
    raise Exception("a is not a string") 

• if 3 < a <= 7: 
    raise Exception("a should not be in (3,7]") 

• These may not be something we need to always check during runtime
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Assertions
• Shortcut for the manual if statements 
• Have python throw an exception if a particular condition is not met 
• assert is a keyword, part of a statement, not a function 
• assert a == 1, "a is not 1" 

• Raises AssertionError if the condition is not met, otherwise continues 
• Can be caught in an except clause or made to crash the code 
• Problem: first failure ends error checks
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Unit Tests
• "Testing shows the presence, not the absence of bugs", E. Dijkstra 
• Want to test many parts of the code 
• Try to cover different functions that may or may not be called 
• Write functions that test code 
• def add(a, b): 
    return a + b + 1 
def test_add(): 
    assert add(3,4) == 7, "add not working" 
def test_operator(): 
    assert operator.add(3,4) == 7, "__add__ not working" 

• If we just call these in a program, first error stops all testing
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Unit Testing Framework
• unittest: built in to Python Standard Library 
• nose2: nose tests, was nose, now nose2 (some nicer filtering options) 
• pytest: extra features like restarting tests from last failed test 
• doctest: built-in, allows test specification in docstrings 

• With the exception of doctest, the frameworks allow the same specification 
of tests
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unittest
• Subclass from unittest.TestCase, write test_* functions 
• Use assert* instance functions 
• import unittest 
 
class TestOperators(unittest.TestCase): 
    def test_add(self): 
        self.assertEqual(add(3, 4), 7) 
     
    def test_add_op(self): 
        self.assertEqual(operator.add(3,4), 7)         
unittest.main(argv=[''], exit=False)
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Lots of Assertions
• assertEqual/assertNotEqual: smart about lists/tuples/etc. 
• assertLess/assertGreater/assertLessEqual/assertGreaterEqual 
• assertAlmostEqual: allows for floating-point arithmetic errors 
• assertTrue/assertFalse: check boolean assertions 
• assertIsNone: check for None values 
• assertIn: check containment 
• assertIsInstance 
• assertRegex: check that a regex matches 
• assertRaises: check that a particular exception is raised
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Test Options
• Run only certain tests 

- argv=[''] # run default set of tests 

- argv=['', 'TestLists'] # run all test* methods in TestLists 

- argv=['', 'TestAdd.test_add'] # run test_add in TestAdd 

• Show more detailed output 
- By default, one character per test plus listing at end 
• F. 

• . indicates success, F indicates failed, E indicates error 
- verbosity=2 

• test_add (__main__.TestAdd) ... FAIL 
test_add_op (__main__.TestAdd) ... ok
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