
Programming Principles in Python (CSCI 503)

Debugging & Testing

Dr. David Koop

D. Koop, CSCI 503, Spring 2021

Dealing with Errors
• Can explicitly check for errors at each step
- Check for division by zero
- Check for invalid parameter value (e.g. string instead of int)

• Sometimes all of this gets in the way and can't be addressed succinctly
- Too many potential errors to check
- Cannot handle groups of the same type of errors together

• Allow programmer to determine when and how to handle issues
- Allow things to go wrong and handle them instead
- Allow errors to be propagated and addressed once

2D. Koop, CSCI 503, Spring 2021

Advantages of Exceptions
• Separate error-handling code from "regular" code
• Allows propagation of errors up the call stack
• Errors can be grouped and differentiated

3

[Java Tutorial, Oracle]
D. Koop, CSCI 503, Spring 2021

https://docs.oracle.com/javase/tutorial/essential/exceptions/advantages.html

Try-Except
• The try statement has the following form:
try:
 <body>
except <ErrorType>*:
 <handler>

• When Python encounters a try statement, it attempts to execute the
statements inside the body.

• If there is no error, control passes to the next statement after the try…
except (unless else or finally clauses)

• Note: except not catch

4D. Koop, CSCI 503, Spring 2021

Exception Granularity
• If you catch any exception using a base class near the top of the hierarchy,

you may be masking code errors
• try:
 c, d = a / b
except Exception:
 c, d = 0, 0

• Remember Exception catches any exception is an instance of Exception
• Catches TypeError: cannot unpack non-iterable float object
• Better to have more granular (specific) exceptions!
• We don't want to catch the TypeError because this is a programming error

not a runtime error

5D. Koop, CSCI 503, Spring 2021

Exception Locality
• try:
 fname = 'missing-file.dat'
 with open(fname) as f:
 lines = f.readlines()
except OSError:
 print(f"An error occurred reading {fname}")
try:
 out_fname = 'output-file.dat'
 with open('output-file.dat', 'w') as fout:
 fout.write("Testing")
except OSError:
 print(f"An error occurred writing {out_fname}")

6D. Koop, CSCI 503, Spring 2021

Multiple Except Clauses
• Function like an if/elif sequence
• Checked in order so put more granular exceptions earlier!
• try:
 fname = 'missing-file.dat'
 with open(fname) as f:
 lines = f.readlines()
 out_fname = 'output-file.dat'
 with open('output-file.dat', 'w') as fout:
 fout.write("Testing")
except FileNotFoundError:
 print(f"File {fname} does not exist")
except OSError:
 print("An error occurred processing files")

7D. Koop, CSCI 503, Spring 2021

Handling Multiple Exceptions at Once
• Can process multiple exceptions with one clause, use tuple of classes
• Allows some specificity but without repeating
• try:
 fname = 'missing-file.dat'
 with open(fname) as f:
 lines = f.readlines()
 out_fname = 'output-file.dat'
 with open('output-file.dat', 'w') as fout:
 fout.write("Testing")
except (FileNotFoundError, PermissionError):
 print("An error occurred processing files")

8D. Koop, CSCI 503, Spring 2021

Exception Objects
• Exceptions themselves are a type of object.
• If you follow the error type with an identifier in an except clause, Python will

assign that identifier the actual exception object.
• Sometimes exceptions encode information that is useful for handling
• try:
 fname = 'missing-file.dat'
 with open(fname) as f:
 lines = f.readlines()
 out_fname = 'output-file.dat'
 with open('output-file.dat', 'w') as fout:
 fout.write("Testing")
except OSError as e:
 print(e.errno, e.filename, e)

9D. Koop, CSCI 503, Spring 2021

Else & Finally
• else: Code that executes if no exception occurs
• finally: Code that always runs, regardless of whether there is an exception
• b = 3
a = 0
try:
 c = b / a
except ZeroDivisionError:
 print("Division failed")
 c = 0
else:
 print("Division succeeded", c)
finally:
 print("This always runs")

10D. Koop, CSCI 503, Spring 2021

Raising Exceptions
• Create an exception and raise it using the raise keyword
• Pass a string that provides some detail
• Example: raise Exception("This did not work correctly")
• Try to find a exception class:

- ValueError: if an argument doesn't fit the functions expectations
- NotImplementedError: if a method isn't implemented (e.g. abstract cls)

• Be specific in the error message, state actual values
• Can also subclass from existing exception class, but check if existing

exception works first
• Some packages create their own base exception class (RequestException)

11D. Koop, CSCI 503, Spring 2021

Making Sense of Exceptions
• When code (e.g. a cell) crashes, read the traceback:
• ZeroDivisionError Traceback (most recent call last)
<ipython-input-58-488e97ad7d74> in <module>
 4 return divide(a+b, a-b)
 5 for i in range(4):
----> 6 process(3, i)
<ipython-input-58-488e97ad7d74> in process(a, b)
 3 return c / d
----> 4 return divide(a+b, a-b)
 5 for i in range(4):
<ipython-input-58-488e97ad7d74> in divide(c, d)
 2 def divide(c, d):
----> 3 return c / d
 4 return divide(a+b, a-b)
ZeroDivisionError: division by zero

12D. Koop, CSCI 503, Spring 2021

Assignment 6
• Object-oriented Programming
• Track University Enrollment
• Methods for checking conflicts (e.g. disallow student to have overlapping

courses, take too many credits)
• Methods for changing course time (check the new time works for everyone)
• Sample code is meant to be run in different cells!
• Due Friday

13D. Koop, CSCI 503, Spring 2021

http://faculty.cs.niu.edu/~dakoop/cs503-2021sp/assignment6.html

14

How do you debug code?

D. Koop, CSCI 503, Spring 2021

Debugging
• print statements
• logging library
• pdb
• Extensions for IDEs (e.g. PyCharm)
• JupyterLab Debugger Support

15D. Koop, CSCI 503, Spring 2021

https://jupyterlab.readthedocs.io/en/stable/user/debugger.html

Print Statements
• Just print the values or other information about identifiers:
• def my_function(a, b):
 print(a, b)
 print(b - a == 0)
 return a + b

• Note that we need to remember what is being printed
• Can add this to print call, or use f-strings with trailing = which causes the

name and value of the variable to be printed
• def my_function(a, b):
 print(f"{a=} {b=} {b - a == 0}")
 return a + b

16D. Koop, CSCI 503, Spring 2021

Print Problems
• Have to uncomment/comment
• Have to remember to get rid of (or comment out) debugging statements

when publishing code
• Print can dump a lot of text (slows down notebooks)
• Can try to be smarter:

- if i % 100 == 0:
 print(i, f"{current_output=}")

- do_print = value == 42
if do_print:
 print(f"{a=} {current_output=}")

17D. Koop, CSCI 503, Spring 2021

Logging Library
• Allows different levels of output (e.g. DEBUG, INFO, WARNING, ERROR

CRITICAL)
• Can output to a file as well as stdout/stderr
• Can configure to suppress certain levels or filter messages
• import logging
def my_function(a,b):
 logging.debug(f"{a=} {b=} {b-a == 0}")
 return a + b
my_function(3, 5)

• This doesn't work in notebooks…

18D. Koop, CSCI 503, Spring 2021

Logging Library
• Need to set default level (e.g. DEBUG)
• For notebooks, best to define own logger and set level
• import logging
logger = logging.Logger('my-logger')
logger.setLevel(logging.DEBUG)
def my_function(a,b):
 logger.debug(f"{a=} {b=} {b-a == 0}")
 return a + b
my_function(3, 5)

• Prints on stderr, can set to stdout via:
• import sys
logging.basicConfig(stream=sys.stdout, level=logging.DEBUG)

19D. Koop, CSCI 503, Spring 2021

Python Debugger (pdb)
• Debuggers offer the ability to inspect and interact with code as it is running
- Define breakpoints as places to stop code and enter the debugger
- Commands to inspect variables and step through code
- Different types of steps (into, over, continue)
- Can have multiple breakpoints in a piece of code

• There are a number of debuggers like those built into IDEs (e.g. PyCharm)
• pdb is standard Python, also an ipdb variant for IPython/notebooks

20D. Koop, CSCI 503, Spring 2021

Python Debugger
• Post-mortem inspection:
- In the notebook, use %debug in a new cell to inspect at the line that raised

the exception
• Can have this happen all the time using %pdb magic
• Brings up a new panel that allows debugging interactions

- In a script, run the script using pdb:
• python -m pdb my_script.py

21D. Koop, CSCI 503, Spring 2021

Python Debugger
• Breakpoints
- To set a breakpoint, simply add a breakpoint() call in the code
- Before Python 3.7, this required import pdb; pdb.set_trace()
- Run the cell/script as normal and pdb will start when it hits the breakpoint

22D. Koop, CSCI 503, Spring 2021

Python Debugger Commands
• p [print expressions]: Print expressions, comma separated
• n [step over]: continue until next line in current function
• s [step into]: stop at next line of code (same function or one being called)
• c [continue]: continue execution until next breakpoint
• l [list code]: list source code (ipdb does this already), also ll (fewer lines)
• b [breakpoints]: list or set new breakpoint (with line number)
• w [print stack trace]: Prints the stack (like what notebook shows during

traceback), u and d commands move up/down the stack
• q [quit]: quit
• h [help]: help (there are many other commands)

23D. Koop, CSCI 503, Spring 2021

Jupyter Debugging Support

24D. Koop, CSCI 503, Spring 2021

Jupyter Debugging Support

24D. Koop, CSCI 503, Spring 2021

25

How do you test code?

D. Koop, CSCI 503, Spring 2021

Testing
• If statements
• Assert statements
• Unit Testing
• Integration Testing

26D. Koop, CSCI 503, Spring 2021

Testing via Print/If Statements
• Can make sure that types or values satisfy expectations
• if not isinstance(a, str):
 raise Exception("a is not a string")

• if 3 < a <= 7:
 raise Exception("a should not be in (3,7]")

• These may not be something we need to always check during runtime

27D. Koop, CSCI 503, Spring 2021

Assertions
• Shortcut for the manual if statements
• Have python throw an exception if a particular condition is not met
• assert is a keyword, part of a statement, not a function
• assert a == 1, "a is not 1"

• Raises AssertionError if the condition is not met, otherwise continues
• Can be caught in an except clause or made to crash the code
• Problem: first failure ends error checks

28D. Koop, CSCI 503, Spring 2021

Unit Tests
• "Testing shows the presence, not the absence of bugs", E. Dijkstra
• Want to test many parts of the code
• Try to cover different functions that may or may not be called
• Write functions that test code
• def add(a, b):
 return a + b + 1
def test_add():
 assert add(3,4) == 7, "add not working"
def test_operator():
 assert operator.add(3,4) == 7, "__add__ not working"

• If we just call these in a program, first error stops all testing

29D. Koop, CSCI 503, Spring 2021

Unit Testing Framework
• unittest: built in to Python Standard Library
• nose2: nose tests, was nose, now nose2 (some nicer filtering options)
• pytest: extra features like restarting tests from last failed test
• doctest: built-in, allows test specification in docstrings

• With the exception of doctest, the frameworks allow the same specification
of tests

30D. Koop, CSCI 503, Spring 2021

unittest
• Subclass from unittest.TestCase, write test_* functions
• Use assert* instance functions
• import unittest

class TestOperators(unittest.TestCase):
 def test_add(self):
 self.assertEqual(add(3, 4), 7)

 def test_add_op(self):
 self.assertEqual(operator.add(3,4), 7)
unittest.main(argv=[''], exit=False)

31D. Koop, CSCI 503, Spring 2021

Lots of Assertions
• assertEqual/assertNotEqual: smart about lists/tuples/etc.
• assertLess/assertGreater/assertLessEqual/assertGreaterEqual
• assertAlmostEqual: allows for floating-point arithmetic errors
• assertTrue/assertFalse: check boolean assertions
• assertIsNone: check for None values
• assertIn: check containment
• assertIsInstance
• assertRegex: check that a regex matches
• assertRaises: check that a particular exception is raised

32D. Koop, CSCI 503, Spring 2021

Test Options
• Run only certain tests

- argv=[''] # run default set of tests

- argv=['', 'TestLists'] # run all test* methods in TestLists

- argv=['', 'TestAdd.test_add'] # run test_add in TestAdd

• Show more detailed output
- By default, one character per test plus listing at end
• F.

• . indicates success, F indicates failed, E indicates error
- verbosity=2

• test_add (__main__.TestAdd) ... FAIL
test_add_op (__main__.TestAdd) ... ok

33D. Koop, CSCI 503, Spring 2021

