Programming Principles in Python (CSCI 503)

Object-Oriented Programming

Dr. David Koop

D. Koop, CSCI 503, Spring 2021 Northern Illinois University

2D Array Slicing

How to obtain the blue slice
from array arr?

[W. McKinney, Python for Data Analysis]

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 2

2D Array Slicing

Expression Shape

arr[:2, 1:] (2, 2)

How to obtain the blue slice
from array arr?

[W. McKinney, Python for Data Analysis]

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 2

2D Array Slicing

Expression Shape

arr[:2, 1:] (2, 2)

arr[2] 3,)

How to obtain the blue slice arr[2, :. (3,
arr[2:, : (1, 3)

from array arr?

[W. McKinney, Python for Data Analysis]

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 2

2D Array Slicing

Expression Shape
arr[:2, 1:] (2, 2)
arr|2] (3,)

How to obtain the blue slice arr([2, :. (3,
from array arr? arr(2:, . (1, 3)
arr[:, :2] (3, 2)

]l SEJE

[W. McKinney, Python for Data Analysis]

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 2

2D Array Slicing

Expression Shape
:::1[!!!!!l arr[:2, 1:] (2, 2)
arr[2. (3,)
How to obtain the blue slice arr([2, :. (3,
from array arr? arr2:, = (1, 3)
|||||||E§§| arr[:, :2] (3, 2)
arr[1, :2] (2,)
arr[1:2, :2] (1, 2)

[W. McKinney, Python for Data Analysis]

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 2

Boolean Indexing

* names == 'Bob' gives back booleans that represent the element-wise
comparison with the array names

e Boolean arrays can be used to index Into another array:

- data[names == 'Bob']
e Can even mix and match with integer slicing

e Can do boolean operations (&, |) between arrays (just like addition,

subtraction)
- data| (names == 'Bob') | (names == '"W1ill")]

e Note: or and and do not work with arrays
e \\le can set values 100! datal[data < 0] = 0

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 3

Object-Oriented Programming Concepts

o Abstraction: simplity, hide implementation details, don't repeat yourself
e Encapsulation: represent an entity fully, keep attrioutes and methods together
¢ |nheritance: reuse (don't reinvent the wheel), specialization

e Polymorphism: methods are handled by a single interface with different
implementations (overriding)

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 4

Vehicle Example

® Suppose we are Implementing a city simulation, and want to model vehicles
driving on the road

e How do we represent a vehicle”?

- Information (attributes): make, model, year, color, num_doors, engine_type,
Mileage, acceleration, top_speed, braking_speed

- Methods (actions): compute_estimated_value(), drive(hnum_seconds,
acceleration), turn_left(), turn_right(), change_lane(dir), brake(),
check_collision(other_vehicle)

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 5

Class vs. Instance

e A class is a blueprint for creating instances
- e.g. Vehicle
e An Instance Is an single object created from a class
- e.g. 2000 Red Toyota Camry
- Each object has its own attributes
- Instance methods produce results unigue to each particular instance

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 6

Classes and Instances in Python

e Class Definition:

- class Vehicle:

def 1nit (self, make, model, year, color):
self.make = make
self.model = model
self.year = year
self.color = color

def age(seltf):
return 2021 - self.year

® |[nstances:
- carl = Vehicle('Toyota', 'Camry', 2000, 'red')
- car2 = Vehicle('Dodge', 'Caravan', 2015, 'gray')

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 7

Components

e Constructor: init

e |[nstance Attributes: self.make, self.model, self.year

e [nstance Methods: def age, def set age

e Jsing classes and instances:
- carl = Vehicle('Toyota', 'Camry', 2000, 'red')
- carl.set age(20)

e \/isibility: no declaration, convention with underscore: color hex

o String Representation: define str , call str ()

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 8

Properties

e Properties allow transformations and checks but are accessed like attributes
® getter and setter have same name, but different decorators

e Decorators (<decorator-name>) do SOme magic
e dproperty

—

detf age(seltf) :
return 2021 - self.year

e dage.setter
def age(self, age):
self.year = 2021 - age
e Using property:

- carl.age = 20

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 9

Class Attributes

¢ \\le can add class attributes inside the class indentation:
e Access by prefixing with class name or self

- class Vehicle:
CURRENT YEAR = 2021

dage.setter

def age(self, age):

1f age < 0 or age > Vehicle.CURRENT YEAR - 1885:
print ("Invalid age, will not set")

else:

self.year = self.CURRENT YEAR - age
e Constants should be CAPITALIZED
e This is not a great constant! (EARLIEST YEAR = 1885 would be!)

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 10

INnheritance

¢ |s-a relationship: Car is a Vehicle, Truck is a Vehicle

e Make sure it isn't composition (has-a) relationship: Vehicle has wheels,
Vehicle has a steering wheel

e Subclass is specialization of base class (superclass)
- Car Is a subclass of Vehicle, Truck Is a subclass of Vehicle

e Can have an entire hierarchy of classes (e.g. Chevy Bolt is subclass of Car
which is a subclass of Vehicle)

e Single inheritance: only one base class
e Multiple inheritance: allows more than base class
- Many languages don't support, Python does

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 11

Subclass

e Just put superclass(-es) in parentheses after the class declaration
e class Car (Vehicle) :

def 1nit (self, make, model, year, color, num doors):
super (). 1nit (make, model, year, color)
self.num doors = num doors

—

def open door (self):

e super () IS a special method that locates the base class

- Constructor should call superclass constructor
- Extra arguments should be Initialized and extra instance methods

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 12

Overriding Methods

e Cclass Rectangle:
def init (self, height,

— T width) : e S = Square (4)
self.h = height e s.set height (8)
1f.w = i ght . .
SEIEe T e - Which method is called?
def set height (self, height): _ Po\ymorphism
self.h = height | |
def area(self): - Resolves according to Inheritance
* .
return self.h self.w hlerarchy
e class Square (Rectangle) :
def 1nit (self, side): ® s.area() 64
super (). 1nit (side, side) - If no method defined, goes up the
def set height (self, height): iINnheritance hierarchy until found

self.h = height
self.w = height

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 13

Checking InstanceOf/Inheritance

e How can we see If an object Is an instance of a particular class or whether a
particular class is a subclass of another”?

e Both check is-a relationship (but differently
® issubclass(clsl, cls2):checksif clsl is-a (subclass) of c1s2

® isinstance (obj, cls):checks if obj Is-a (Instance) of cls

e Note that isinstance IS True If obj IS an Instance of a class that Is a
subclass of cls

- car = Car('Toyota', 'Camry', 2000, 'red', 4)
1sinstance (car, Vehicle) True

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 14

INterfaces

® |[n some languages, can define an abstract base class
- [he structure Is defined but without implementation
- Alternatively, some methods are defined abstract, others are implemented
¢ |nterfaces are important for types
- Method can specity a particular type that can be abstract
- [his doesn't matter as much in Python
e Python has ABC (Abstract Base Class)
- Solution to be able to check for mappings, sequences via isinstance, €etc.

- abc.Mapping, abc.Sequence, abc.MutableSequence

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 15

Duck lyping

o "I it looks like a duck and quacks like a duck, it must be a duck."

e Python "does not look at an object’s type to determine if it has the right
INnterface; instead, the method or attribute i1s simply called or used”

e Class Rectangle:
det area(seltf) :

e class Circle:
def area(sel?f) :

¢ |t doesn't matter that they don't have a common base class as long as they
respond to the methods/attributes we expect: shape.area ()

[Python Glossary]

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 16

https://docs.python.org/3/glossary.html#term-duck-typing

Multiple Inheritance

e Can have a class inherit from two different superclasses
e HybridCar inherits from Car and Hybrid

e Python allows this!
- class HybridCar (Car, Hybrid) : ..

e Problem: how IS super () IS defined?

- Diamond Problem
- Python use the method resolution order (MRO) to determine order of calls

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 17

VIIXINS

e Sometimes, we just want to add a particular method to a bunch of different
classes

® FOr example: print as dict ()

e A mixin class allows us to specify one or more methods and add it as the

second

e Caution: Python searches from left to right so a base class should be at the
right with mixing

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 18

Operator Overloading

e Dunder methods

e Examples:
- add (self, right)

- ladd (self, right)

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 19

