
Programming Principles in Python (CSCI 503)

Object-Oriented Programming

Dr. David Koop

D. Koop, CSCI 503, Spring 2021

 [0.1913, 0.4544, 0.4519, 0.5535],
 [0.5994, 0.8174, -0.9297, -1.2564]])

Figure 4-2. Two-dimensional array slicing

Suppose each name corresponds to a row in the data array and we wanted to select all
the rows with corresponding name 'Bob'. Like arithmetic operations, comparisons
(such as ==) with arrays are also vectorized. Thus, comparing names with the string
'Bob' yields a boolean array:

In [87]: names == 'Bob'
Out[87]: array([True, False, False, True, False, False, False], dtype=bool)

This boolean array can be passed when indexing the array:

In [88]: data[names == 'Bob']
Out[88]:
array([[-0.048 , 0.5433, -0.2349, 1.2792],
 [2.1452, 0.8799, -0.0523, 0.0672]])

The boolean array must be of the same length as the axis it’s indexing. You can even
mix and match boolean arrays with slices or integers (or sequences of integers, more
on this later):

In [89]: data[names == 'Bob', 2:]
Out[89]:
array([[-0.2349, 1.2792],

86 | Chapter 4: NumPy Basics: Arrays and Vectorized Computation

2D Array Slicing

2

[W. McKinney, Python for Data Analysis]
D. Koop, CSCI 503, Spring 2021

How to obtain the blue slice
from array arr?

 [0.1913, 0.4544, 0.4519, 0.5535],
 [0.5994, 0.8174, -0.9297, -1.2564]])

Figure 4-2. Two-dimensional array slicing

Suppose each name corresponds to a row in the data array and we wanted to select all
the rows with corresponding name 'Bob'. Like arithmetic operations, comparisons
(such as ==) with arrays are also vectorized. Thus, comparing names with the string
'Bob' yields a boolean array:

In [87]: names == 'Bob'
Out[87]: array([True, False, False, True, False, False, False], dtype=bool)

This boolean array can be passed when indexing the array:

In [88]: data[names == 'Bob']
Out[88]:
array([[-0.048 , 0.5433, -0.2349, 1.2792],
 [2.1452, 0.8799, -0.0523, 0.0672]])

The boolean array must be of the same length as the axis it’s indexing. You can even
mix and match boolean arrays with slices or integers (or sequences of integers, more
on this later):

In [89]: data[names == 'Bob', 2:]
Out[89]:
array([[-0.2349, 1.2792],

86 | Chapter 4: NumPy Basics: Arrays and Vectorized Computation

2D Array Slicing

2

[W. McKinney, Python for Data Analysis]
D. Koop, CSCI 503, Spring 2021

How to obtain the blue slice
from array arr?

 [0.1913, 0.4544, 0.4519, 0.5535],
 [0.5994, 0.8174, -0.9297, -1.2564]])

Figure 4-2. Two-dimensional array slicing

Suppose each name corresponds to a row in the data array and we wanted to select all
the rows with corresponding name 'Bob'. Like arithmetic operations, comparisons
(such as ==) with arrays are also vectorized. Thus, comparing names with the string
'Bob' yields a boolean array:

In [87]: names == 'Bob'
Out[87]: array([True, False, False, True, False, False, False], dtype=bool)

This boolean array can be passed when indexing the array:

In [88]: data[names == 'Bob']
Out[88]:
array([[-0.048 , 0.5433, -0.2349, 1.2792],
 [2.1452, 0.8799, -0.0523, 0.0672]])

The boolean array must be of the same length as the axis it’s indexing. You can even
mix and match boolean arrays with slices or integers (or sequences of integers, more
on this later):

In [89]: data[names == 'Bob', 2:]
Out[89]:
array([[-0.2349, 1.2792],

86 | Chapter 4: NumPy Basics: Arrays and Vectorized Computation

2D Array Slicing

2

[W. McKinney, Python for Data Analysis]
D. Koop, CSCI 503, Spring 2021

How to obtain the blue slice
from array arr?

 [0.1913, 0.4544, 0.4519, 0.5535],
 [0.5994, 0.8174, -0.9297, -1.2564]])

Figure 4-2. Two-dimensional array slicing

Suppose each name corresponds to a row in the data array and we wanted to select all
the rows with corresponding name 'Bob'. Like arithmetic operations, comparisons
(such as ==) with arrays are also vectorized. Thus, comparing names with the string
'Bob' yields a boolean array:

In [87]: names == 'Bob'
Out[87]: array([True, False, False, True, False, False, False], dtype=bool)

This boolean array can be passed when indexing the array:

In [88]: data[names == 'Bob']
Out[88]:
array([[-0.048 , 0.5433, -0.2349, 1.2792],
 [2.1452, 0.8799, -0.0523, 0.0672]])

The boolean array must be of the same length as the axis it’s indexing. You can even
mix and match boolean arrays with slices or integers (or sequences of integers, more
on this later):

In [89]: data[names == 'Bob', 2:]
Out[89]:
array([[-0.2349, 1.2792],

86 | Chapter 4: NumPy Basics: Arrays and Vectorized Computation

2D Array Slicing

2

[W. McKinney, Python for Data Analysis]
D. Koop, CSCI 503, Spring 2021

How to obtain the blue slice
from array arr?

 [0.1913, 0.4544, 0.4519, 0.5535],
 [0.5994, 0.8174, -0.9297, -1.2564]])

Figure 4-2. Two-dimensional array slicing

Suppose each name corresponds to a row in the data array and we wanted to select all
the rows with corresponding name 'Bob'. Like arithmetic operations, comparisons
(such as ==) with arrays are also vectorized. Thus, comparing names with the string
'Bob' yields a boolean array:

In [87]: names == 'Bob'
Out[87]: array([True, False, False, True, False, False, False], dtype=bool)

This boolean array can be passed when indexing the array:

In [88]: data[names == 'Bob']
Out[88]:
array([[-0.048 , 0.5433, -0.2349, 1.2792],
 [2.1452, 0.8799, -0.0523, 0.0672]])

The boolean array must be of the same length as the axis it’s indexing. You can even
mix and match boolean arrays with slices or integers (or sequences of integers, more
on this later):

In [89]: data[names == 'Bob', 2:]
Out[89]:
array([[-0.2349, 1.2792],

86 | Chapter 4: NumPy Basics: Arrays and Vectorized Computation

2D Array Slicing

2

[W. McKinney, Python for Data Analysis]
D. Koop, CSCI 503, Spring 2021

How to obtain the blue slice
from array arr?

Boolean Indexing
• names == 'Bob' gives back booleans that represent the element-wise

comparison with the array names
• Boolean arrays can be used to index into another array:

- data[names == 'Bob']

• Can even mix and match with integer slicing
• Can do boolean operations (&, |) between arrays (just like addition,

subtraction)
- data[(names == 'Bob') | (names == 'Will')]

• Note: or and and do not work with arrays
• We can set values too! data[data < 0] = 0

3D. Koop, CSCI 503, Spring 2021

Object-Oriented Programming Concepts
• Abstraction: simplify, hide implementation details, don't repeat yourself
• Encapsulation: represent an entity fully, keep attributes and methods together
• Inheritance: reuse (don't reinvent the wheel), specialization
• Polymorphism: methods are handled by a single interface with different

implementations (overriding)

4D. Koop, CSCI 503, Spring 2021

Vehicle Example
• Suppose we are implementing a city simulation, and want to model vehicles

driving on the road
• How do we represent a vehicle?
- Information (attributes): make, model, year, color, num_doors, engine_type,

mileage, acceleration, top_speed, braking_speed
- Methods (actions): compute_estimated_value(), drive(num_seconds,

acceleration), turn_left(), turn_right(), change_lane(dir), brake(),
check_collision(other_vehicle)

5D. Koop, CSCI 503, Spring 2021

Class vs. Instance
• A class is a blueprint for creating instances
- e.g. Vehicle

• An instance is an single object created from a class
- e.g. 2000 Red Toyota Camry
- Each object has its own attributes
- Instance methods produce results unique to each particular instance

6D. Koop, CSCI 503, Spring 2021

Classes and Instances in Python
• Class Definition:

- class Vehicle:
 def __init__(self, make, model, year, color):
 self.make = make
 self.model = model
 self.year = year
 self.color = color

 def age(self):
 return 2021 - self.year

• Instances:
- car1 = Vehicle('Toyota', 'Camry', 2000, 'red')

- car2 = Vehicle('Dodge', 'Caravan', 2015, 'gray')

7D. Koop, CSCI 503, Spring 2021

Components
• Constructor: __init__
• Instance Attributes: self.make, self.model, self.year
• Instance Methods: def age, def set_age
• Using classes and instances:

- car1 = Vehicle('Toyota', 'Camry', 2000, 'red')

- car1.set_age(20)

• Visibility: no declaration, convention with underscore: _color_hex
• String Representation: define __str__, call str()

8D. Koop, CSCI 503, Spring 2021

Properties
• Properties allow transformations and checks but are accessed like attributes
• getter and setter have same name, but different decorators
• Decorators (@<decorator-name>) do some magic
• @property
def age(self):
 return 2021 - self.year

• @age.setter
def age(self, age):
 self.year = 2021 - age

• Using property:
- car1.age = 20

9D. Koop, CSCI 503, Spring 2021

Class Attributes
• We can add class attributes inside the class indentation:
• Access by prefixing with class name or self

- class Vehicle:
 CURRENT_YEAR = 2021
 …
 @age.setter
 def age(self, age):
 if age < 0 or age > Vehicle.CURRENT_YEAR - 1885:
 print("Invalid age, will not set")
 else:
 self.year = self.CURRENT_YEAR - age

• Constants should be CAPITALIZED
• This is not a great constant! (EARLIEST_YEAR = 1885 would be!)

10D. Koop, CSCI 503, Spring 2021

Inheritance
• Is-a relationship: Car is a Vehicle, Truck is a Vehicle
• Make sure it isn't composition (has-a) relationship: Vehicle has wheels,

Vehicle has a steering wheel
• Subclass is specialization of base class (superclass)
- Car is a subclass of Vehicle, Truck is a subclass of Vehicle

• Can have an entire hierarchy of classes (e.g. Chevy Bolt is subclass of Car
which is a subclass of Vehicle)

• Single inheritance: only one base class
• Multiple inheritance: allows more than base class
- Many languages don't support, Python does

11D. Koop, CSCI 503, Spring 2021

Subclass
• Just put superclass(-es) in parentheses after the class declaration
• class Car(Vehicle):
 def __init__(self, make, model, year, color, num_doors):
 super().__init__(make, model, year, color)
 self.num_doors = num_doors

 def open_door(self):
 …

• super() is a special method that locates the base class
- Constructor should call superclass constructor
- Extra arguments should be initialized and extra instance methods

12D. Koop, CSCI 503, Spring 2021

Overriding Methods
• class Rectangle:
 def __init__(self, height,
 width):
 self.h = height
 self.w = weight

 def set_height(self, height):
 self.h = height
 def area(self):
 return self.h * self.w

• class Square(Rectangle):
 def __init__(self, side):
 super().__init__(side, side)

 def set_height(self, height):
 self.h = height
 self.w = height

• s = Square(4)

• s.set_height(8)

- Which method is called?
- Polymorphism
- Resolves according to inheritance

hierarchy
• s.area() # 64

- If no method defined, goes up the
inheritance hierarchy until found

13D. Koop, CSCI 503, Spring 2021

Checking InstanceOf/Inheritance
• How can we see if an object is an instance of a particular class or whether a

particular class is a subclass of another?
• Both check is-a relationship (but differently
• issubclass(cls1, cls2): checks if cls1 is-a (subclass) of cls2
• isinstance(obj, cls): checks if obj is-a (instance) of cls
• Note that isinstance is True if obj is an instance of a class that is a

subclass of cls
- car = Car('Toyota','Camry', 2000, 'red', 4)
isinstance(car, Vehicle) # True

14D. Koop, CSCI 503, Spring 2021

Interfaces
• In some languages, can define an abstract base class
- The structure is defined but without implementation
- Alternatively, some methods are defined abstract, others are implemented

• Interfaces are important for types
- Method can specify a particular type that can be abstract
- This doesn't matter as much in Python

• Python has ABC (Abstract Base Class)
- Solution to be able to check for mappings, sequences via isinstance, etc.
- abc.Mapping, abc.Sequence, abc.MutableSequence

15D. Koop, CSCI 503, Spring 2021

Duck Typing
• "If it looks like a duck and quacks like a duck, it must be a duck."
• Python "does not look at an object’s type to determine if it has the right

interface; instead, the method or attribute is simply called or used"
• class Rectangle:
 def area(self):
 …

• class Circle:
 def area(self):
 …

• It doesn't matter that they don't have a common base class as long as they
respond to the methods/attributes we expect: shape.area()

16

[Python Glossary]
D. Koop, CSCI 503, Spring 2021

https://docs.python.org/3/glossary.html#term-duck-typing

Multiple Inheritance
• Can have a class inherit from two different superclasses
• HybridCar inherits from Car and Hybrid
• Python allows this!

- class HybridCar(Car, Hybrid): …

• Problem: how is super() is defined?
- Diamond Problem
- Python use the method resolution order (MRO) to determine order of calls

17D. Koop, CSCI 503, Spring 2021

Mixins
• Sometimes, we just want to add a particular method to a bunch of different

classes
• For example: print_as_dict()
• A mixin class allows us to specify one or more methods and add it as the

second
• Caution: Python searches from left to right so a base class should be at the

right with mixing

18D. Koop, CSCI 503, Spring 2021

Operator Overloading
• Dunder methods
• Examples:

- __add__(self, right)

- __iadd__(self, right)

19D. Koop, CSCI 503, Spring 2021

