
Programming Principles in Python (CSCI 503)

Object-Oriented Programming

Dr. David Koop

D. Koop, CSCI 503, Spring 2021

Arrays
• Usually a fixed size—lists are meant to change size
• Are mutable—tuples are not
• Store only one type of data—lists and tuples can store anything
• Are faster to access and manipulate than lists or tuples
• Can be multidimensional:
- Can have list of lists or tuple of tuples but no guarantee on shape
- Multidimensional arrays are rectangles, cubes, etc.

2D. Koop, CSCI 503, Spring 2021

NumPy Arrays
• import numpy as np
• Creating:

- data1 = [6, 7, 8, 0, 1]

- arr1 = np.array(data1)

- arr1_float = np.array(data1, dtype='float64')

- np.ones((4,2)) # 2d array of ones

- arr1_ones = np.ones_like(arr1) # [1, 1, 1, 1, 1]

• Type and Shape Information:
- arr1.dtype # int64 # type of values stored in array

- arr1.ndim # 1 # number of dimensions

- arr1.shape # (5,) # shape of the array

3D. Koop, CSCI 503, Spring 2021

Array Operations
• a = np.array([1,2,3])
b = np.array([6,4,3])

• (Array, Array) Operations (Element-wise)
- Addition, Subtraction, Multiplication
- a + b # array([7, 6, 6])

• (Scalar, Array) Operations (Broadcasting):
- Addition, Subtraction, Multiplication, Division, Exponentiation
- a ** 2 # array([1, 4, 9])

- b + 3 # array([9, 7, 6])

4D. Koop, CSCI 503, Spring 2021

Figure 4-1. Indexing elements in a NumPy array

In multidimensional arrays, if you omit later indices, the returned object will be a
lower dimensional ndarray consisting of all the data along the higher dimensions. So
in the 2 × 2 × 3 array arr3d:

In [76]: arr3d = np.array([[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]])

In [77]: arr3d
Out[77]:
array([[[1, 2, 3],
 [4, 5, 6]],
 [[7, 8, 9],
 [10, 11, 12]]])

arr3d[0] is a 2 × 3 array:
In [78]: arr3d[0]
Out[78]:
array([[1, 2, 3],
 [4, 5, 6]])

Both scalar values and arrays can be assigned to arr3d[0]:
In [79]: old_values = arr3d[0].copy()

In [80]: arr3d[0] = 42

In [81]: arr3d
Out[81]:
array([[[42, 42, 42],
 [42, 42, 42]],
 [[7, 8, 9],
 [10, 11, 12]]])

In [82]: arr3d[0] = old_values

96 | Chapter 4: NumPy Basics: Arrays and Vectorized Computation

Indexing
• Same as with lists

- arr1 = np.array([6, 7, 8, 0, 1])

- arr1[1]

- arr1[-1]

• What about two dimensions?
- arr2 = np.array([[1,2,3],
 [4,5,6],
 [7,8,9]])

- arr[1][1]

- arr[1,1] # shorthand

5D. Koop, CSCI 503, Spring 2021

Slicing
• 1D: Similar to lists

- arr1 = np.array([6, 7, 8, 0, 1])

- arr1[2:5] # np.array([8,0,1]), sort of

• Can mutate original array:
- arr1[2:5] = 3 # supports assignment

• Slicing returns views (copy the array if original array shouldn't change)
- arr1.copy() or arr1[2:5].copy() will copy

6D. Koop, CSCI 503, Spring 2021

Assignment 5
• Scripts and Modules
• Write a three modules in a Python package with methods to process

Pokémon data
• Write a script to retrieve Pokémon information via command-line arguments
• MaxCP formula fixed by 2021-02-28
• Turn in a zip file with package
• No notebook required, but useful to test your code as you work

- %autoreload or importlib.reload

7D. Koop, CSCI 503, Spring 2021

http://faculty.cs.niu.edu/~dakoop/cs503-2021sp/assignment5.html

 [0.1913, 0.4544, 0.4519, 0.5535],
 [0.5994, 0.8174, -0.9297, -1.2564]])

Figure 4-2. Two-dimensional array slicing

Suppose each name corresponds to a row in the data array and we wanted to select all
the rows with corresponding name 'Bob'. Like arithmetic operations, comparisons
(such as ==) with arrays are also vectorized. Thus, comparing names with the string
'Bob' yields a boolean array:

In [87]: names == 'Bob'
Out[87]: array([True, False, False, True, False, False, False], dtype=bool)

This boolean array can be passed when indexing the array:

In [88]: data[names == 'Bob']
Out[88]:
array([[-0.048 , 0.5433, -0.2349, 1.2792],
 [2.1452, 0.8799, -0.0523, 0.0672]])

The boolean array must be of the same length as the axis it’s indexing. You can even
mix and match boolean arrays with slices or integers (or sequences of integers, more
on this later):

In [89]: data[names == 'Bob', 2:]
Out[89]:
array([[-0.2349, 1.2792],

86 | Chapter 4: NumPy Basics: Arrays and Vectorized Computation

2D Array Slicing

8

[W. McKinney, Python for Data Analysis]
D. Koop, CSCI 503, Spring 2021

How to obtain the blue slice
from array arr?

 [0.1913, 0.4544, 0.4519, 0.5535],
 [0.5994, 0.8174, -0.9297, -1.2564]])

Figure 4-2. Two-dimensional array slicing

Suppose each name corresponds to a row in the data array and we wanted to select all
the rows with corresponding name 'Bob'. Like arithmetic operations, comparisons
(such as ==) with arrays are also vectorized. Thus, comparing names with the string
'Bob' yields a boolean array:

In [87]: names == 'Bob'
Out[87]: array([True, False, False, True, False, False, False], dtype=bool)

This boolean array can be passed when indexing the array:

In [88]: data[names == 'Bob']
Out[88]:
array([[-0.048 , 0.5433, -0.2349, 1.2792],
 [2.1452, 0.8799, -0.0523, 0.0672]])

The boolean array must be of the same length as the axis it’s indexing. You can even
mix and match boolean arrays with slices or integers (or sequences of integers, more
on this later):

In [89]: data[names == 'Bob', 2:]
Out[89]:
array([[-0.2349, 1.2792],

86 | Chapter 4: NumPy Basics: Arrays and Vectorized Computation

2D Array Slicing

8

[W. McKinney, Python for Data Analysis]
D. Koop, CSCI 503, Spring 2021

How to obtain the blue slice
from array arr?

 [0.1913, 0.4544, 0.4519, 0.5535],
 [0.5994, 0.8174, -0.9297, -1.2564]])

Figure 4-2. Two-dimensional array slicing

Suppose each name corresponds to a row in the data array and we wanted to select all
the rows with corresponding name 'Bob'. Like arithmetic operations, comparisons
(such as ==) with arrays are also vectorized. Thus, comparing names with the string
'Bob' yields a boolean array:

In [87]: names == 'Bob'
Out[87]: array([True, False, False, True, False, False, False], dtype=bool)

This boolean array can be passed when indexing the array:

In [88]: data[names == 'Bob']
Out[88]:
array([[-0.048 , 0.5433, -0.2349, 1.2792],
 [2.1452, 0.8799, -0.0523, 0.0672]])

The boolean array must be of the same length as the axis it’s indexing. You can even
mix and match boolean arrays with slices or integers (or sequences of integers, more
on this later):

In [89]: data[names == 'Bob', 2:]
Out[89]:
array([[-0.2349, 1.2792],

86 | Chapter 4: NumPy Basics: Arrays and Vectorized Computation

2D Array Slicing

8

[W. McKinney, Python for Data Analysis]
D. Koop, CSCI 503, Spring 2021

How to obtain the blue slice
from array arr?

 [0.1913, 0.4544, 0.4519, 0.5535],
 [0.5994, 0.8174, -0.9297, -1.2564]])

Figure 4-2. Two-dimensional array slicing

Suppose each name corresponds to a row in the data array and we wanted to select all
the rows with corresponding name 'Bob'. Like arithmetic operations, comparisons
(such as ==) with arrays are also vectorized. Thus, comparing names with the string
'Bob' yields a boolean array:

In [87]: names == 'Bob'
Out[87]: array([True, False, False, True, False, False, False], dtype=bool)

This boolean array can be passed when indexing the array:

In [88]: data[names == 'Bob']
Out[88]:
array([[-0.048 , 0.5433, -0.2349, 1.2792],
 [2.1452, 0.8799, -0.0523, 0.0672]])

The boolean array must be of the same length as the axis it’s indexing. You can even
mix and match boolean arrays with slices or integers (or sequences of integers, more
on this later):

In [89]: data[names == 'Bob', 2:]
Out[89]:
array([[-0.2349, 1.2792],

86 | Chapter 4: NumPy Basics: Arrays and Vectorized Computation

2D Array Slicing

8

[W. McKinney, Python for Data Analysis]
D. Koop, CSCI 503, Spring 2021

How to obtain the blue slice
from array arr?

 [0.1913, 0.4544, 0.4519, 0.5535],
 [0.5994, 0.8174, -0.9297, -1.2564]])

Figure 4-2. Two-dimensional array slicing

Suppose each name corresponds to a row in the data array and we wanted to select all
the rows with corresponding name 'Bob'. Like arithmetic operations, comparisons
(such as ==) with arrays are also vectorized. Thus, comparing names with the string
'Bob' yields a boolean array:

In [87]: names == 'Bob'
Out[87]: array([True, False, False, True, False, False, False], dtype=bool)

This boolean array can be passed when indexing the array:

In [88]: data[names == 'Bob']
Out[88]:
array([[-0.048 , 0.5433, -0.2349, 1.2792],
 [2.1452, 0.8799, -0.0523, 0.0672]])

The boolean array must be of the same length as the axis it’s indexing. You can even
mix and match boolean arrays with slices or integers (or sequences of integers, more
on this later):

In [89]: data[names == 'Bob', 2:]
Out[89]:
array([[-0.2349, 1.2792],

86 | Chapter 4: NumPy Basics: Arrays and Vectorized Computation

2D Array Slicing

8

[W. McKinney, Python for Data Analysis]
D. Koop, CSCI 503, Spring 2021

How to obtain the blue slice
from array arr?

Slicing
• 2D+: comma separated indices as shorthand:

- arr2 = np.array([[1.5,2,3,4],[5,6,7,8]])

- a[1:2,1:3]

- a[1:2,:] # works like in single-dimensional lists

• Can combine index and slice in different dimensions
- a[1,:] # gives a row

- a[:,1] # gives a column

• Slicing vs. indexing produces different shapes!
- a[1,:] # 1-dimensional

- a[1:2,:] # 2-dimensional

9D. Koop, CSCI 503, Spring 2021

More Reshaping
• reshape:

- arr2.reshape(4,2) # returns new view

• resize:
- arr2.resize(4,2) # no return, modifies arr2 in place

• flatten:
- arr2.flatten() # array([1.5,2.,3.,4.,5.,6.,7.,8.])

• ravel:
- arr2.ravel() # array([1.5,2.,3.,4.,5.,6.,7.,8.])

• flatten and ravel look the same, but ravel is a view

10D. Koop, CSCI 503, Spring 2021

Array Transformations
• Transpose

- arr2.T # flip rows and columns

• Stacking: take iterable of arrays and stack them horizontally/vertically
- arrh1 = np.arange(3)

- arrh2 = np.arange(3,6)

- np.vstack([arrh1, arrh2])

- np.hstack([arr1.T, arr2.T]) # ???

11D. Koop, CSCI 503, Spring 2021

Boolean Indexing
• names == 'Bob' gives back booleans that represent the element-wise

comparison with the array names
• Boolean arrays can be used to index into another array:

- data[names == 'Bob']

• Can even mix and match with integer slicing
• Can do boolean operations (&, |) between arrays (just like addition,

subtraction)
- data[(names == 'Bob') | (names == 'Will')]

• Note: or and and do not work with arrays
• We can set values too! data[data < 0] = 0

12D. Koop, CSCI 503, Spring 2021

13

Object-Oriented Programming

D. Koop, CSCI 503, Spring 2021

Object-Oriented Programming Concepts
• ?

14D. Koop, CSCI 503, Spring 2021

Object-Oriented Programming Concepts
• Abstraction: simplify, hide implementation details, don't repeat yourself
• Encapsulation: represent an entity fully, keep attributes and methods together
• Inheritance: reuse (don't reinvent the wheel), specialization
• Polymorphism: methods are handled by a single interface with different

implementations (overriding)

15D. Koop, CSCI 503, Spring 2021

Object-Oriented Programming Concepts
• Abstraction: simplify, hide implementation details, don't repeat yourself
• Encapsulation: represent an entity fully, keep attributes and methods together
• Inheritance: reuse (don't reinvent the wheel), specialization
• Polymorphism: methods are handled by a single interface with different

implementations (overriding)

16D. Koop, CSCI 503, Spring 2021

Vehicle Example
• Suppose we are implementing a city simulation, and want to model vehicles

driving on the road
• How do we represent a vehicle?
- Information (attributes)
- Methods (actions)

17D. Koop, CSCI 503, Spring 2021

Vehicle Example
• Suppose we are implementing a city simulation, and want to model vehicles

driving on the road
• How do we represent a vehicle?
- Information (attributes): make, model, year, color, num_doors, engine_type,

mileage, acceleration, top_speed, braking_speed
- Methods (actions): compute_estimated_value(), drive(num_seconds,

acceleration), turn_left(), turn_right(), change_lane(dir), brake(),
check_collision(other_vehicle)

18D. Koop, CSCI 503, Spring 2021

Other Entities
• Road, Person, Building, ParkingLot
• Some of these interact with a Vehicle, some don't
• We want to store information associated with entities in a structured way
- Building probably won't store anything about cars
- Road should not store each car's make/model
- …but we may have an association where a Road object keeps track of the

cars currently driving on it

19D. Koop, CSCI 503, Spring 2021

Object-Oriented Design
• There is a lot more than can be said about how to best define classes and

the relationship between different classes
• It's not easy to do this well!
• Software Engineering
• Entity Relationship (ER) Diagrams
• Difference between Object-Oriented Model and ER Model

20D. Koop, CSCI 503, Spring 2021

Class vs. Instance
• A class is a blueprint for creating instances
- e.g. Vehicle

• An instance is an single object created from a class
- e.g. 2000 Red Toyota Camry
- Each object has its own attributes
- Instance methods produce results unique to each particular instance

21D. Koop, CSCI 503, Spring 2021

Classes and Instances in Python
• Class Definition:

- class Vehicle:
 def __init__(self, make, model, year, color):
 self.make = make
 self.model = model
 self.year = year
 self.color = color

 def age(self):
 return 2021 - self.year

• Instances:
- car1 = Vehicle('Toyota', 'Camry', 2000, 'red')

- car2 = Vehicle('Dodge', 'Caravan', 2015, 'gray')

22D. Koop, CSCI 503, Spring 2021

Constructor
• How an object is created and initialized

- def __init__(self, make, model, year, color):
 self.make = make
 self.model = model
 self.year = year
 self.color = color

• __init__ denotes the constructor
- Not required, but usually should have one
- All initialization should be done by the constructor
- There is only one constructor allowed
- Can add defaults to the constructor (year=2021, color='gray')

23D. Koop, CSCI 503, Spring 2021

Instance Attributes
• Where information about an object is stored

- def __init__(self, make, model, year, color):
 self.make = make
 self.model = model
 self.year = year
 self.color = color

• self is the current object
• self.make, self.model, self.year, self.color are instance attributes
• There is no declaration required for instance attributes like in Java or C++
- Can be created in any instance method…
- …but good OOP design means they should be initialized in the constructor

24D. Koop, CSCI 503, Spring 2021

Instance Methods
• Define actions for instances

- def age(self):
 return 2021 - self.year

• Like constructors, have self as first argument
• self will be the object calling the method
• Have access to instance attributes and methods via self
• Otherwise works like a normal function
• Can also modify instances in instance methods:

- def set_age(self, age):
 self.year = 2021 - age

25D. Koop, CSCI 503, Spring 2021

Creating and Using Instances
• Creating instances:
- Constructor expressions specify the name of the class to instantiate and

specify any arguments to the constructor (not including self)
- Returns new object
- car1 = Vehicle('Toyota', 'Camry', 2000, 'red')

- car2 = Vehicle('Dodge', 'Caravan', 2015, 'gray')
• Calling an instance method

- car1.age()

- car1.set_age(20)

- Note self is not passed explicitly, it's car1 (instance before the dot)

26D. Koop, CSCI 503, Spring 2021

Used Objects Many Times Before
• Everything in Python is an object!

- my_list = list()

- my_list.append(3)

- num = int('64')

- name = "Gerald"

- name.upper()

27D. Koop, CSCI 503, Spring 2021

Visibility
• In some languages, encapsulation allows certain attributes and methods to

be hidden from those using an instance
• public (visible/available) vs. private (internal only)
• Python does not have visibility descriptors, but rather conventions (PEP8)
- Attributes & methods with a leading underscore (_) are intended as private
- Others are public
- You can still access private names if you want but generally shouldn't:

• print(car1._color_hex)

- Double underscores leads to name mangling:
self.__internal_vin is stored at self._Vehicle__internal_vin

28D. Koop, CSCI 503, Spring 2021

Representation methods
• Printing objects:

- print(car1) # <__main__.Vehicle object at 0x7efc087c6b20>

• "Dunder-methods": __init__
• Two for representing objects:

- __str__: human-readable
- __repr__: official, machine-readable

• >>> now = datetime.datetime.now()
>>> now.__str__()
'2020-12-27 22:28:00.324317'
>>> now.__repr__()
'datetime.datetime(2020, 12, 27, 22, 28, 0, 324317)'

29

[https://www.journaldev.com/22460/python-str-repr-functions]
D. Koop, CSCI 503, Spring 2021

https://www.journaldev.com/22460/python-str-repr-functions

Representation methods
• Car example:

- class Vehicle:
 …
 def __str__(self):
 return f'{self.year} {self.make} {self.model}'

• Don't call print in this method! Return a string
• When using, don't call directly, use str or repr

- str(car1)

• print internally calls __str__
- print(car1)

30D. Koop, CSCI 503, Spring 2021

Other Dunder Methods
• __eq__(<other>): return True if two objects are equal
• __lt__(<other>): return True if object < other
• Collections:

- __len__(): return number of items
- __contains__(item): return True if collection contains item
- __getitem__(index): return item at index (which could be a key)

• + More

31D. Koop, CSCI 503, Spring 2021

Properties
• Common pattern is getters and setters:

- def age(self):
 return 2021 - self.year

- def set_age(self, age):
 self.year = 2021 - age

• In some sense, this is no different than year except that we don't want to
store age separate from year (they should be linked)

• Properties allow transformations and checks but are accessed like attributes
• @property
def age(self):
 return 2021 - self.year

• car1.age # 21

32D. Koop, CSCI 503, Spring 2021

Properties
• Can also define setters
• Syntax is a bit strange, want to link the two: @<property-name>.setter
• Method has the same name as the property: How?
• Decorators (@<decorator-name>) do some magic
• @property
def age(self):
 return 2021 - self.year

• @age.setter
def age(self, age):
 self.year = 2021 - age

• car1.age = 20

33D. Koop, CSCI 503, Spring 2021

Properties
• Add validity checks!
• First car was 1885 so let's not allow ages greater than that (or negative ages)
• @age.setter
def age(self, age):
 if age < 0 or age > 2021 - 1885:
 print("Invalid age, will not set")
 else:
 self.year = 2021 - age

• Better: raise exception (later)

34D. Koop, CSCI 503, Spring 2021

Class Attributes
• We can add class attributes inside the class indentation:
• Access by prefixing with class name or self

- class Vehicle:
 CURRENT_YEAR = 2021
 …
 @age.setter
 def age(self, age):
 if age < 0 or age > Vehicle.CURRENT_YEAR - 1885:
 print("Invalid age, will not set")
 else:
 self.year = self.CURRENT_YEAR - age

• Constants should be CAPITALIZED
• This is not a great constant! (EARLIEST_YEAR = 1885 would be!)

35D. Koop, CSCI 503, Spring 2021

