Programming Principles in Python (CSCI 503)

Object-Oriented Programming

Dr. David Koop

D. Koop, CSCI 503, Spring 2021 Northern Illinois University

Arrays

e Usually a fixed size—Ilists are meant to change size

e Are mutable —tuples are not

e Store only one type of data—Ilists and tuples can store anything

e Are faster to access and manipulate than lists or tuples

e Can be multidimensional:
- Can have list of lists or tuple of tuples but no guarantee on shape
- Multidimensional arrays are rectangles, cubes, etc.

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 2

NumPy Arrays

® |mport numpy as np

e Creating:
- datal = [6, 7, 8, 0, 1]
- arrl = np.array(datal)

- arrl float = np.array(datal, dtype='tfloatod')

—

- np.ones((4,2)) 2d array of ones

- arrl ones = np.ones like(arrl) (1, 1, 1, 1, 1]

¢ [ype and Shape Information:

- arrl.dtype into4 type of values stored 1n array
- arrl.ndim 1 number of dimensions
- arrl.shape (2,) shape of the array

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 3

Array Operations

e a = np.arrav([1,2,3])
b = np.arrav([6,4,3])

e (Array, Array) Operations (Element-wise)

- Addition, Subtraction, Multiplication
- a + b arravy([7, 6, ©6])

e (Scalar, Array) Operations (Broadcasting):
- Addition, Subtraction, Multiplication, Division, Exponentiation
- a ** 2 array([1l, 4, 9])
- b + 3 array([9, 7, ©])

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 4

Indexing

e Same as with lists
- arrl = np.array([o6, 7, &8, 0, 11)
- arrl|[1]

0 1 2
- arrl[—-1]
e \Vhat about two dimensions”? 0 nnn
- arr?2 = np.array([[1,2,3],
:4/5/6:1 axis 0 1
/,3,9]1])
- arr[1][1])
- arr[1l,1] shorthand

axis 1

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 5

Slicing

e 1D: Similar to lists
- arrl = np.array([o6, 7, &8, 0, 11)

B

- arrl[2:5] np.array([8,0,1]), sort of

e Can mutate original array:

- arrl[2:5] = 3 supports assignment

e Slicing returns views (copy the array if original array shouldn't change)
- arrl.copy () Orarrl[2:5].copy () Wil copy

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 6

Assignment 5

e Scripts and Modules

o \\rite a three modules In a Python package with methods to process
Pokémon data

o \\Vrite a script to retrieve Pokémon information via command-line arguments
e MaxCP formula fixed by 2021-02-28

e [urn in a zip file with package

e No notebook required, but useful to test your code as you work

- sautoreload Or 1mportlib.reload

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 7

http://faculty.cs.niu.edu/~dakoop/cs503-2021sp/assignment5.html

2D Array Slicing

How to obtain the blue slice
from array arr?

[W. McKinney, Python for Data Analysis]

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 8

2D Array Slicing

Expression Shape

arr[:2, 1:] (2, 2)

How to obtain the blue slice
from array arr?

[W. McKinney, Python for Data Analysis]

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 8

2D Array Slicing

Expression Shape

arr[:2, 1:] (2, 2)

arr[2] 3,)

How to obtain the blue slice arr[2, :. (3,
arr[2:, : (1, 3)

from array arr?

[W. McKinney, Python for Data Analysis]

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 8

2D Array Slicing

Expression Shape
arr[:2, 1:] (2, 2)
arr|2] (3,)

How to obtain the blue slice arr([2, :. (3,
from array arr? arr(2:, . (1, 3)
arr[:, :2] (3, 2)

]l SEJE

[W. McKinney, Python for Data Analysis]

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 8

2D Array Slicing

Expression Shape
:::1[!!!!!l arr[:2, 1:] (2, 2)
arr[2. (3,)
How to obtain the blue slice arr([2, :. (3,
from array arr? arr2:, = (1, 3)
|||||||E§§| arr[:, :2] (3, 2)
arr[1, :2] (2,)
arr[1:2, :2] (1, 2)

[W. McKinney, Python for Data Analysis]

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 8

Slicing

o ?D+: comma separated indices as shorthand:
- arr2 = np.array([[1.5,2,3,4],[5,06,7,8]1)
-all:2,1:3]
-all:2,] works like 1n single-dimensional lists
e Can combine index and slice in different dimensions

- all,] glves a row

-al:, 1] glves a column

e Slicing vs. Indexing produces different shapes!

-all, :] l-dimensional

-all:2, :] 2—dimensional

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 9

More Reshaping

® reshape;

- arrZ.reshape (4, 2) returns new viliew
® resize:

- arrZ.resize(4,2) no return, modifies arr2 in place
e flatten:

- arr2.flatten () array([1.5,2.,3.,4.,5.,0.,7.,8.1])

® ravel:
- arr2.ravel () array([1.5,2.,3.,4.,5.,06.,7.,8.])

¢ flatten and ravel look the same, but ravel is a view

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 10

Array lransformations

® [ranspose

- arr2.T flip rows and columns
o Stacking: take iterable of arrays and stack them horizontally/vertically
- arrhl = np.arange (3)

- arrhZ2 = np.arange (3, 0)
- np.vstack ([arrhl, arrh2])
- np.hstack(larrl.T, arr2.T]) P27

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 11

Boolean Indexing

* names == 'Bob' gives back booleans that represent the element-wise
comparison with the array names

e Boolean arrays can be used to index Into another array:

- data[names == 'Bob']
e Can even mix and match with integer slicing

e Can do boolean operations (&, |) between arrays (just like addition,

subtraction)
- data| (names == 'Bob') | (names == '"W1ill")]

e Note: or and and do not work with arrays
e \\le can set values 100! datal[data < 0] = 0

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 12

Object-Oriented Programming

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 13

Object-Oriented Programming Concepts

° 7/

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 14

Object-Oriented Programming Concepts

o Abstraction: simplity, hide implementation details, don't repeat yourself
e Encapsulation: represent an entity fully, keep attrioutes and methods together
¢ |nheritance: reuse (don't reinvent the wheel), specialization

e Polymorphism: methods are handled by a single interface with different
implementations (overriding)

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 15

Object-Oriented Programming Concepts

e Abstraction: simplify, hide implementation details, don't repeat yourself
e Encapsulation: represent an entity fully, keep attributes and methods together
e |nheritance: reuse (don't reinvent the wheel), specialization

e Polymorphism: methods are handled by a single interface with different
implementations (overriding)

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 16

Vehicle Example

® Suppose we are iImplementing a city simulation, and want to model vehicles
driving on the road

e How do we represent a vehicle”
- Information (attributes)
- Methods (actions)

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 17

Vehicle Example

® Suppose we are Implementing a city simulation, and want to model vehicles
driving on the road

e How do we represent a vehicle”?

- Information (attributes): make, model, year, color, num_doors, engine_type,
Mileage, acceleration, top_speed, braking_speed

- Methods (actions): compute_estimated_value(), drive(hnum_seconds,
acceleration), turn_left(), turn_right(), change_lane(dir), brake(),
check_collision(other_vehicle)

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 18

Other Entities

e Road, Person, Building, ParkingLot

e Some of these interact with a Vehicle, some don't

¢ \Ve want to store information associated with entities in a structured way
- Building probably won't store anything about cars
- Road should not store each car's make/model

- ...but we may have an association where a Road object keeps track of the
cars currently driving on it

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 19

Object-Oriented Design

e [here Is a lot more than can be said about how to best define classes and
the relationship between different classes

¢ |[t's not easy to do this well!

e Software Engineering

o Entity Relationship (ER) Diagrams

o Difference between Object-Oriented Model and ER Model

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 20

Class vs. Instance

e A class is a blueprint for creating instances
- e.g. Vehicle
e An Instance Is an single object created from a class
- e.g. 2000 Red Toyota Camry
- Each object has its own attributes
- Instance methods produce results unigue to each particular instance

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 21

Classes and Instances in Python

e Class Definition:

- class Vehicle:

def 1nit (self, make, model, year, color):
self.make = make
self.model = model
self.year = year
self.color = color

def age(seltf):
return 2021 - self.year

® |[nstances:
- carl = Vehicle('Toyota', 'Camry', 2000, 'red')
- car2 = Vehicle('Dodge', 'Caravan', 2015, 'gray')

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 22

Constructor

e How an object is created and initialized

- def 1nit (self, make, model, year, color):
self.make = make
self.model = model
self.year = year
self.color = color

e init denotes the constructor

- Not required, but usually should have one

- All initialization should be done by the constructor

- [here Is only one constructor allowed

- Can add defaults to the constructor (year=2021, color='gray')

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 23

INnstance Attributes

e \Where Information about an object is stored

- def 1nit (self, make, model, year, color):
self.make = make
self.model = model
self.year = year
self.color = color

e self IS the current object

® self.make, self.model, self.year, self.color are instance attributes

* There is no declaration required for instance attributes like in Java or C++
- Can be created in any instance method...
- ...but good OOP design means they should be initialized in the constructor

D. Koop, CSCI 503, Spring 2021 Northern Illinois University =~ 24

INnstance Methods

e Define actions for instances

—

- detf age(seltf) :
return 2021 - self.year

e | ke constructors, have self as first argument
e self will be the object calling the method

e Have access to Instance attributes and methods via self

e Otherwise works like a normal function
e Can also modify instances in instance methods:

r— —

- def set age(self, age):
self.year = 2021 - age

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 25

Creating and Using Instances

e Creating instances:

- Constructor expressions specify the name of the class to instantiate and
specify any arguments to the constructor (not including sel £)

- Returns new object
- carl = Vehicle('Toyota', 'Camry', 2000, 'red')

- carZ2 = Vehicle('Dodge', 'Caravan',6 2015, 'gravy')
e Calling an instance method

- carl.age ()

- carl.set age(20)
- Note self is not passed explicitly, it's carl (instance before the dot)

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 26

Used Objects Many Times Before

e Fverything in Python is an object!
-my list = 1list ()
- my list.append(3)
- num = 1nt('oc4d")
- name = "Gerald"

- name.upper ()

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 27

Visibility

* |n some languages, encapsulation allows certain attributes and methods to
obe hidden from those using an instance

e public (visible/available) vs. private (internal only)
e Python does not have visibility descriptors, but rather conventions (PEPS)
- Attributes & methods with a leading underscore () are intended as private

- Others are public
- You can still access private names If you want but generally shouldn't:

e print (carl. color hex)

- Double underscores leads to name mangling:

sel

p—

f. internal vin IS stored at self

._Vehicle__internal_vin

D. Koop, CSCI 503, Spring 2021

Northern Illinois University 28

Representation methods

* Printing objects:
- print (carl) < maln .Vehicle object at 0x7efc087cob20>

e "Dunder-methods”: init

e [WO for representing objects:
- str :human-readable

- repr : Official, machine-readable

e >>> now = datetime.datetime.now ()
>>> now. str ()
'2020-12-27 22:28:00.324317"

>>> now. repr ()
'datetime.datetime (2020, 12, 27, 22, 28, 0, 324317)"

[https://www.journaldev.com/22460/python-str-repr-functions]

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 29

https://www.journaldev.com/22460/python-str-repr-functions

Representation methods

e Car example:
- class Vehicle:

def str (self) :

return f'{self.year} {self.make} {self.model}’

e Don't call print In this method! Return a string

e \When using, don't call directly, use str or repr

- str(carl)

e print INnternally calls str

- print (carl)

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 30

Other Dunder Methods

® cg (<other>):return True If two oObjects are equal

e 1t (<other>):return True If object < other

e Collections:
- len ():return number of tems

- contains (item): return True If collection contains item

- getitem (index): returnitem at index (which could be a key)
e + More

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 31

Properties

e Common pattern is getters and setters:

- def age(self):
return 2021 - self.year

—

set age(self, age):
self.year = 2021 - age

B

- de:

® |n some sense, this is no different than year except that we don't want to
store age separate from year (they should be linked)

e Properties allow transformations and checks but are accessed like attributes
e dproperty

—

def age(seltf):
return 2021 - self.vyear

e carl.age 21

D. Koop, CSCI 503, Spring 2021 Northern Illinois University ~ 32

Properties

e Can also define setters
e Syntax Is a bit strange, want to link the two: @<property-name>.setter

e Method has the same name as the property: How?

e Decorators (<decorator-name>) do SOmMme magic
e dproperty

—

detf age(seltf):
return 2021 - self.year

e dage.setter
def age(self, age):
self.year = 2021 - age

e carl.age = 20

D. Koop, CSCI 503, Spring 2021 Northern Illinois University ~ 33

Properties

e Add validity checks!
e irst car was 1885 so let's not allow ages greater than that (or negative ages)

e dage.setterx
def age(self, age):
1f age < 0 or age > 2021 - 1885:
print ("Invalid age, will not set")
else:
self.year = 2021 - age

e Better: raise exception (later)

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 34

Class Attributes

¢ \\le can add class attributes inside the class indentation:
e Access by prefixing with class name or self

- class Vehicle:
CURRENT YEAR = 2021

dage.setter

def age(self, age):

1f age < 0 or age > Vehicle.CURRENT YEAR - 1885:
print ("Invalid age, will not set")

else:

self.year = self.CURRENT YEAR - age
e Constants should be CAPITALIZED
e This is not a great constant! (EARLIEST YEAR = 1885 would be!)

D. Koop, CSCI 503, Spring 2021 Northern Illinois University ~ 35

