Programming Principles in Python (CSCI 503)

Strings
Dr. David Koop

(some slides adapted from Dr. Reva Freedman)

D. Koop, CSCI 503, Spring 2021 Northern Illinois University

Sets & Operations

e s = {'DeKalb', 'Kane', 'Cook', "Will'}
t = {'DeKalb', 'Winnebago', '"Will'}

e Union: s | t {'DeKalb', 'Kane', 'Cook', 'Will', 'Winnebago'}

e [Nntersection: s & t {'DeKalb', '"Will'}

e Difference: s - t {'Kane', 'Cook'}

e Symmetric Difference: s ~ t {'"Kane', 'Cook', 'Winnebago')}

e Object method variants: s.union(t), s.intersection(t),

—

s.difference(t), s.symmetric difference (t)

 * update and augmented operator variants

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 2

Comprehension

e Shortcut for loops that transform or filter collections

e Functional programming features this way of thinking:
Pass functions to functions!

o Imperative: a loop with the actual functionality buried inside
e Functional: specity both functionality and data as inputs

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 3

|ist Comprehension

e output = []
for d 1n range(5):
output.append(d ** 2 - 1)

® Rewrite as a map:
- output = [d ** 2 - 1 for d 1n range(5)]

e Can also filter:
- output = [d for d 1n range(d5) 1£f d % 2 == 1]

e Combine map & filter:
- output = [d ** 2 - 1 for d in range(b) 1f d $ 2 == 1]

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 4

Comprehensions for other collections

e Dictionaries

- {k: v for (k, v) 1n other dict.items ()
1f k.startswith('a') }

- Example: one-to-one map Inverses

e {v: k for (k, v) 1n other dict.items() }

* Be careful that the dictionary Is actually one-to-one!
® Sets:

- {s[0] for s 1n names}

e Tuples” Not exactly

- (s[0] for s 1n names)

- Not a tuple, a generator expression

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 5

iterators

o Key concept: iterators only need to have a way to get the next element
® [0 be Iterable, an object must be able to produce an iterator
- Technically, must implementthe iter methoo

® An iterator must have two things:
- a method to get the next item
- a way to signal no more elements
¢ |n Python, an iterator is an object that must
- have a defined next methoo
- ralsSe StopException If NO More elements available

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 6

(Generators

e Special functions that return lazy iterables
e Use less memory
e Change is that functions yield instead of return

—

o def

square (1t) :
for 1 1n 1t:
vield 1*1

o [f we are iterating through a generator, we hit the first yield and immediately
return that first computation

e (Generator expressions just shorthand (rememlber no tuple comprehensions)
- (» * 1 for 1 1in [1,2,3,4,5])

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 7

Efficient Evaluation

e Only compute when necessary, not beforehand

o 4+ — compute Fast Function{s+—+)
——eompute—stow—tFunetiron{s—+8)
1f s > t and s**2 + t**2 > 100:

u compute fast function(s, t)
res = u / 100

else:
v = compute slow function(s, t)
res = v / 100

e slow function will not be executed unless the condition IS true

Northern Illinois University 8

D. Koop, CSCI 503, Spring 2021

Short-Circuit Evaluation

o Automatic, works left to right according to order of operations (and before or)
e \Works for and and or

® and:

- Ifany value Is False, Stop and return False
-a, b =2, 3
a > 3 and b < 5
® Or:

- If any value Is True, stop and return True

-a, b, ¢ =2, 3, 7
a > 3 or b < 5 o0or ¢ > 8

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 9

Viemolization

e memo dict = {}
def memolzed slow function(s, t):
1f (s, t) not 1n memo dict:

memo dict[(s, t)] = compute slow function(s, t)

return memo dict([(s, t)]

e for s, t in [(12, 10), (4, 5), (5, 4), (12, 10)]:
1f s > t and (¢ := memoized slow function(s, t) > 50):
Pass
else:

c = compute fast function (s, t)

B

e Second time executing for s=12, t=10, we don't need to compute!
¢ [radeoff memory for compute time

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 10

Assignment 3

e Jomorrow Is an administrative day, so deadline moved to Friday
e Pokemon Data

¢ | ots of iteration and dictionary access

e AlSO create new lists and dictionaries

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 11

http://faculty.cs.niu.edu/~dakoop/cs503-2021sp/assignment3.html

lest 1

e Covers material through today's class
e Content aligns with recommended text, but we covered more In lectures
® Format:

- Multiple Choice

- Free Response (see web page for examples)

e Questions related to principles and concepts as well as Python specifically
(.e. syntax)

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 12

http://faculty.cs.niu.edu/~dakoop/cs503-2021sp/test1.html

Example

e SuUppose | want to write Python code to print the numbers from 1 to 100.
What errors do you see”? How could you improve the code”

// print the numbers from 1 to 100
int counter =1
while counter < 100 {

print counter

counter++

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 13

~unctional Programming

e Programming without imperative statements like assignment

¢ |n addition to comprehensions & iterators, have functions:
- map: iterable of n values to an iterable of n transformed values
- filter: iterable of n values to an iterable of m (m <= n) values

e Eliminates need for concrete looping constructs

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 14

Viap

e (Generator function (lazy evaluation)

e -irst argument Is a function, second argument Is the iterable

—

e def upper(s):
return s.upper ()

e map (upper, |['sentence', 'fragment'])

e Similar comprehension:

- [upper(s) for s 1n ['sentence',

e [his only calls upper once

o~

1f word == "SENTENCE":
break

!

e for word 1n map (upper, |['sentence',

generator

fragment']] comprehension

fragment']) :

D. Koop, CSCI 503, Spring 2021

Northern Illinois University 15

Fllter

® Also a generator

—

e def 1s even (x):
return (x % 2) == 0

e fi1lter(1s even, range(1l0)) generator

e Similar comprehension:

- [d for d 1n range(10) 1f 1s even(d)] comprehension

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 16

| ambda Functions

—

e def 1s even(x):
return (X % 2) ==

e filter(1s even, range (10) generator

¢ | ots of code to write a simple check

e | ambda functions allow inline function definition

e Usually used for "one-liners": a simple data transform/expression

O

e filter(lambda x: x 5 2 == 0, range(10))

e Parameters follow lambda, ho parentheses
e NO return Keyword as this is implicit in the syntax
e Javascript has similar functionality (arrow functions): (d => d % 2 == 0)

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 17

Strings

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 18

Strings

e Remember strings are sequences of characters
e Strings are collections so have 1en, in, and iteration

- s = "Huskiesg"
len(s); "usk" 1n s; |[c for ¢ 1n s 1f ¢ == 's']

e Strings are sequences so have
- Indexing and slicing: s[0], s[1:]
- concatenation and repetition: s + " at NIU"; s * 2

e Single or double quotes 'stringl', "string2"
e [riple double-quotes: """A string over many lines"""
e Escaped characters: '\n' (newline) '\t (tab)

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 19

Unicode and ASCI|

e Conceptual systems

o ASCII:
- old 7-bit system (only 128 characters)

- English-centric
e Unicode:
- modern system
- Can represent over 1 million characters from all languages + emoji £+

- Characters have hexadecimal representation: € = U+00E9 and
name (LATIN SMALL LETTER E WITH ACUTE)

- Python allows you to type "é" or represent via code "\u00e9"

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 20

Unicode and ASCI|

e Encoding: How things are actually stored
o ASCII "Extensions”: how to represent characters for different languages
- No universal extension for 256 characters (one byte), so...
- 1S0O-8859-1, 1S0O-8859-2, CP-1252, etc.
e Unicode encoding:
- UTF-8: used in Python and elsewhere (uses variable # of 1 —4 bytes)
- Also UTF-16 (2 or 4 bytes) and UTF-32 (4 bytes for everything)
- Byte Order Mark (BOM) for files to indicate endianness (which byte first)

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 21

Strings are Objects with Methods

e \Ve can call methods on strings like we can with lists

—

- s = "Peter Pilper picked a peck of pickled peppers"
s.count ('p')

e Doesn't matter iIf we have a variable or a literal

—

- "Peter Pilper picked a peck of pickled peppers".find("pick™")

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 22

Finding & Counting Substrings

S

S

.count (sub): Count the number of occurrences of sub IN s

.find (sub): FInd the first position where sub occurs in s, else -1

.rfind (sub): Like £ind, but returns the right-most position

.index (sub) : Like £ind, but raises a Valuekrror if not found

.rindex (sub): LiIke index, but returns right-most position

sub in s: Returns True If s contains sub

S

S

.startswith (sub): Returns True If s starts with sub
.endswith (sub): Returns True If s ends with sub

D. Koop, CSCI 503, Spring 2021

Northern Illinois University 23

Removing Leading and Trailing Strings

e s.strip (): Copy of s with leading and trailing whitespace removed
e s.1strip(): Copy of s with leading whitespace removed

e s.rstrip(): Copy of s with trailing whitespace removed

* s.removeprefix (prefix): Copy of s with prefix removed (if it exists)

p—

e s.removesuffix (suffix): Copy of s with suffix removed (if it exists)

D. Koop, CSCI 503, Spring 2021 Northern Illinois University =~ 24

Transtforming lext

® s.replace(oldsub, newsub):.
Copy of s with occurrences of oldsub IN s With newsub

e s.upper (): Copy of s with all uppercase characters

e s.lower (): Copy of s with all lowercase characters

e s.capitalize (): Copy of s with first character capitalized

e s.title (): Copy of s with first character of each word capitalized

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 25

Checking String Composition

String Method Description

1salnum () Returns True if the string contains only alphanumeric characters (i.e., digits & letters).
1salpha () Returns True if the string contains only alphabetic characters (i.e., letters).
1sdecimal () Returns True if the string contains only decimal integer characters
1sdigit () Returns True if the string contains only digits (e.g., ‘0", '1", '2").
1sidentifier () |Returns True if the string represents a valid identifier.
1slower () Returns True if all alphabetic characters in the string are lowercase characters
1snumeric () Returns True if the characters in the string represent a numeric value w/o a + or - or .
1sspace () Returns True if the string contains only whitespace characters.
1stitle () Returns True if the first character of each word Is the only uppercase character in it.
1 supper () Returns True if all alphalbetic characters in the string are uppercase characters

[Deitel & Deitel]

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 26

Splitting

e s = "Venkata, Ranjit, Pankaj, Ali, Karthika"
e names = s.split (', ") names 1s a list
e names = s.split(',', 3) split by commas, split <= 3 times

e separator may be multiple characters

e if NO separator is supplied (sep=None), runs of consecutive whitespace
delimit elements

* rsplit WOrKS In reverse, from the rignt of the string
* partition and rpartition for a single split with before, sep, and after
e splitlines Splits at line boundaries, optional parameter to keep endings

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 27

Joining

* join IS a method on the separator used to join a list of strings
e ','.jJ0oln (names)

- names IS a list of strings, ', ' Is the separator used to join them
e Example:

p—

- def orbit(n):

return orbit as list
print (', '.Jjoin(orbit as list))

D. Koop, CSCI 503, Spring 2021 Northern Illinois University ~ 28

~ormatting

* s.1ljust, s.rjust: Justify strings by adding fill characters to obtain a string
with specified width

S .

S .

z£f1i11: 1just with zeroes

format: templating function

Replace fields indicated by curly braces with corresponding values
"My name 1s {} {}".format(first name, last name)

"My name 1s {1} {0}".format (last name, first name)

"My name 1s {first name} {last name}.format (

Braces can contain number or name of keyword argument

- Whole format mini-language to control formatting

first_name=name[0], last_name=name[l])

Northern Illinois University 29

D. Koop, CSCI 503, Spring 2021

https://docs.python.org/3/library/string.html#format-specification-mini-language

Format Strings

e Formatted string literals (f-strings) prefix the starting delimiter with £

e Reference variables directly!
- "My name 1s {first name} {last name}"

e Can include expressions, too:
- £f"My name 1s {name[0] .capitalize ()} {name[l].capitalize() }"

e Same format mini-language is available

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 30

https://docs.python.org/3/library/string.html#format-specification-mini-language

Format Mini-Language Presentation lypes

e Not usually required for obvious types
e :d for integers

e :c for characters

e :s for strings

* :c Or : £ for floating point
- e: scientific notation (all but one digit after decimal point)
- f: fixed-point notation (decimal number)

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 31

Fleld Widths and Alignments

o After : but before presentation type

- £'[{27:10d}]" ' 271"
- £f'[{"hello":10}]" '[hello]
e Shift alignment using < or >:
- f'[{"hello":>15}]" ' hello]"

e Center align using *:
- f'[{"hello":"7}]" '[hello]

D. Koop, CSCI 503, Spring 2021 Northern Illinois University ~ 32

Numeric Formatting

e Add positive sign:
- £'[{27:+10d}]" ' +277"
e Add space but only show negative numbers:
- print (£'{27: d}\n{-27: d}") note the space in front of 27

e Separators:
- £'{12345678:,d}" '12,345,678"

D. Koop, CSCI 503, Spring 2021 Northern Illinois University ~ 33

Raw Strings

e Raw strings pretix the starting delimiter with r

e Disallow escaped characters
e '\\n 1is the way you write a newline, \\\\ for \\.'

e r"\n is the way you write a newline, \\ for \."

o Jseful for regular expressions

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 34

Reqgular Expressions

o AKA regex
e A syntax to better specity how to decompose strings

e | ook for patterns rather than specific characters
e "31" in "The last day of December is 12/31/2016."

e May work for some questions but now suppose | have other lines like: "The
last day of September is 9/30/2016."

e .and | want to find dates that look like:
o {digits}/{digits}/{digits}

e Cannot search for every combination!
o \d+/\d+/\d+ \d 1s a character class

D. Koop, CSCI 503, Spring 2021 Northern Illinois University ~ 35

