Programming Principles in Python (CSCI 503)

SEeqUENCES

Dr. David Koop

D. Koop, CSCI 503, Spring 2021 Northern Illinois University

Functions

e def <functilion—-name> (<parameter-names>) :
do stutt
return res

e Use return to return a value

e Can return more than one value using commas
e def <function—-name> (<parameter-names>) :

—

do stut:
return resl, res?

e Use simultaneous assignment when calling:
- a, b = do something (1,2, 5)

e |f there Is No return value, the function returns None (a special value)

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 2

Scope

® [he scope of a variable refers to where in a program it can be referenced
e Python has three scopes:

- global: defined outside a function
- local: in a function, only valid in the function
- nonlocal: can be used with nested functions
e Python allows variables in different scopes to have the same name

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 3

| ocal Scope

o def f () : no arguments
X = 7
print ("x i1n function:", X)
x = 1

£ ()

print ("x 1n main:", Xx)

e Qutput:

- X 1n function: 2
X 1n main: 1

e Here, the x In £ IS In the local scope

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 4

Global Keyword for Global Scope

e def f(): no arguments
global x
X = 2
print ("x i1n function:", X)

X = 1
£ ()

print ("x 1n main:", Xx)
e QOutput:

- X 1n function: 2
X 1n main: 2

e Here, the x In £ IS In the global scope because of the global declaration

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 5

Python as Pass-by-Value?

—

e def change list(inner list):
inner list = [10,9,8,7,0]

outer list =

[0,1,2,3,4]

change list (outer list)

outer list

[0,1,2,3,4]

¢ | 0Oks like pass by value!

D. Koop, CSCI 503, Spring 2021

Northern Illinois University 6

Python as Pass-by-Reterence’

—

e def change list(inner list):

1nner list.append(5)

outer list = [0,1,2,3,4]
change list (outer list)
outer list (0,1,2,3,4,5]

® | 0OKS like pass by reference!

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 7

Python IS Pass-by-object-reference

o AKA passing object references by value
e Python doesn't allocate space for a variable, it just links identifier to a value

e Mutability of the object determines whether other references see the change

o Any iImmutable object will act like pass by value

e Any mutable object acts like pass by reference unless it Is reassigned to a
new value

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 8

Detault Parameter Values

e Can add =<value> to parameters

—

e def rectangle area(width=30, height=20):
return width * height

o All of these work:

- rectangle area () 000
- rectangle area(10) 200
- rectangle area (10, 50) 200

¢ |f the user does not pass an argument for that parameter, the parameter Is
set to the default value

e Cannot add non-default parameters after a defaulted parameter
Annf o4 N

- def—rectanglte area{wradth=30—height)

[Deitel & Deitel]

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 9

Keyword Arguments

o Keyword arguments allow someone calling a function to specify exactly
which values they wish to specity without specifying all the values

* [his helps with long parameter lists where the caller wants to only change a
few arguments from the defaults

e def f (alpha=3, beta=4, gamma=1, delta=7, epsilon=38, zeta=2Z,
eta=0.3, theta=0.5, 10ta=0.24, kappa=0.134) :

o f (beta=12, 1o0ta=0.7)

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 10

Assignment 2
 Due Tonight

e Python control flow and functions
e Do not use containers like lists!
e [he /x+-1 function
¢ \lake sure to follow instructions
- Name the submitted file a2.ipynb
- Put your name and z-id In the first cell
- Label each part of the assignment using markdown
- Make sure to produce output according to specifications

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 11

http://faculty.cs.niu.edu/~dakoop/cs503-2021sp/assignment2.html

Assignment 3

e Coming soon...

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 12

SEqUENCES

e Strings are sequences of characters: "albcde”
¢ | |Sts are also sequences: [1, 2, 3, 4, 5]
e + Juples: (1, 2, 3, 4, 5)

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 13

| IStS

e Definingalist: my 1ist = [0, 1, 2, 3, 4]

e But lists can store different types:
- my list = [0, "a", 1.34]

* |ncluding other lists:
- my list = [0, "a", 1.34, [1, 2, 3]]

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 14

Hsts Tuples

e Defining a tuple: my tuple = (0, 1, 2, 3, 4)

e But tuples can store different types:
- my tuple = (0, "a", 1.34)

* |ncluding other tuples:
- my tuple = (0, "a", 1.34, (1, 2, 3))

e How do you define a tuple with one element”/

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 15

Hsts Tuples

e Defining a tuple: my tuple = (0, 1, 2, 3, 4)

e But tuples can store different types:
- my tuple = (0, "a", 1.34)

* |ncluding other tuples:
- my tuple = (0, "a", 1.34, (1, 2, 3))

e How do you define a tuple with one element”
- my tuple = (1) doesn't work

- my tuple = (1,) add trailing comma

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 16

List Operations

® Not like vectors or matrices!

e Concatenate: [1, 2] + [3, 4] (1,2,3,4]
e Repeat: [1,2] * 3 (1,2,1,2,1,2]

e length:my list = [1,2]; len(my list) 2

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 17

Hst Sequence Operations

e Concatenate: [1, 21 + [3, 4] [(1,2,3,4]
e Repeat: [1,2] * 3 (1,2,1,2,1,2]

® Length: my list = [1,2]; len(my list) %

e Concatenate: (1, 2) + (3, 4) (1,2,3,4)
e Repeat: (1,2) * 3 (1,2,1,2,1,2)

e [ength: my tuple = (1,2); len(my tuple) 2

e Concatenate: "ab" + "cd" # "abcd"
e Repeat: "ab" * 3 "ababab"
e length: my str = "ab"; len(my str) 2

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 18

Sequence Indexing

e Square brackets are used to pull out an element of a sequence
e \Ve always start counting at zero!

A 1A

e my str = "abcde"; my str[0. a
enmy list = [1,2,3,4,35]; my list[2Z. 3
e my tuple = (1,2,3,4,5); my tuple[5] ITndexError

o 1 2 3 4
HEEEE

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 19

Negative Indexing

e Subtract from the end of the sequence to the beginning
e \Ve always start counting at zere -1 (zero would be ambiguous!)

e my str = "abcde"; my str[-1] "e
enmy list = [1,2,3,4,5]; my list[-3] 3
e my tuple = (1,2,3,4,5); my tuple[-5] 1

0 2 3 4
HEEEE

-5 -4 -3 -2 -1

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 20

Slicing

e \Vant a subsequence of the given sequence
e Specify the start and the first index not included

e Returns the same type of sequence

e my str = "abcde"; my str[l:3] """, ™.
enmy list = [1,2,3,4,5]; my list[3:4] [4

e my tuple = (1,2,3,4,5); my tuple[2:99] (3,4,5)

0 1 % 3 4
1o e felefa]e

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 21

Negative Indices with Slices

e Negative Indices can be used instead or with non-negative indices
e my str = "abcde"; my str[-4:-2 b, "]

emy list = [1,2,3,4,5]; my list[3:-1] (4]

e How do we include the last element”

e my tuple = (1,2,3,4,5); my tuple[-2:7]

0 1 % 3 4
ez (e pleld]e

-5 -4 -3 -2 -1

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 22

Negative Indices with Slices

e Negative Indices can be used instead or with non-negative indices
e my str = "abcde"; my str[-4:-2 b, "]

emy list = [1,2,3,4,5]; my list[3:-1] (4]

e How do we include the last element”

e my tuple = (1,2,3,4,5); my tuple[-2 :]

0 1 % 3 4
ez (e pleld]e

-5 -4 -3 -2 -1

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 22

Implicit Indices

 Don't need to write indices for the beginning or end of a sequence
o Omitting the first number of a slice means start from the beginning
e Omitting the last number of a slice means go through the end

e my tuple = (1,2,3,4,9); my—tuptet—2tenitmy—tupie]
e my tuple = (1,2,3,4,5); my tuple[-2:] (4,5)

e Can create a copy of a sequence by omitting both

enmy list = [1,2,3,4,5]; my list[:] [1,2,3,4,5]

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 23

Indexing Quiz

my_liSt — ['aV’ 'b" 'C', 'd" 'e']

HEEEE
HEEEE
HEEEE
HEEEE

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 24

Indexing Quiz

my_liSt — ['aV’ 'b" 'C', 'd" 'e']

H““H my list[2]; my list[-3]; my list[2:3]
afefefale
afefefa]e
afefefale

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 24

Indexing Quiz

my_liSt — ['aV’ 'b" 'C', 'd" 'e']

HHHH my list[2]; my list[-3]; my list[2:3]
afplefale| mmraeiia CoTTETY
. - - ’ _
my list[l:-1]
afofelale
alofcfale

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 24

Indexing Quiz

my_liSt — ['aV’ 'b" 'C', 'd" 'e']

T [e][] mytiseians my tiseros); my tise(2:s
afolelale] mmcriy oo T
. - - ’ _
my list[l:-1]
- 0:4]; my listf[:4];

IEI"I’IIII"I:IIEII Y i . ‘.
my list[-5:-1]
IEI"I’IIII"IHIIEII

(1 (1

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 24

Indexing Quiz

my_liSt — ['aV’ 'b" 'C', 'd" 'e']

C _- l o) —
my list[l:—1]
C

0:4]; my listf[:4];

afolelale] mrrecrs.
my list[-5:-1]
T [RIE] meseeisons msseeias

(1 (1

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 24

lteration

e for d 1n sequence:

do stutftf
e Important: d is a data item, not an index!
e sequence = "abcdet"
for d 1n sequence:
print (d, end=" ") a b c de £
e sequence = [1,2,3,4,95]
for d 1n sequence:
print (d, end=" ") 1 2 3 4 5
e sequence = (1,2,3,4,5)
for d 1n sequence:
print (d, end=" ") 1 2 3 4 5

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 25

Viembership

e <expr> 1n <seqg>
e Returns True If the expression is in the sequence, False otherwise

e "a" 1n "abcde" True
e O 1n [1,2,3,4,5] False
e 3 1n (3, 3, 3, 3) True

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 26

Seqguence Operations

Operator Meaning
<seg> t+ <seqg> Concatenation
<seg> * <int-expr> Repetition
<seg>[<int-expr>] Indexing
len (<seg>) Length
<seg>[<int-expr?>:<int-expr?>] |Gjicing
for <var> in <seg>: lteration
<expr> 1n <seqg> Membership (Boolean)

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 27

Seqguence Operations

Operator Meaning
<seg> t+ <seg> Concatenation
<seg> * <int-expr> Repetition
<seg>[<int-expr>] Indexing

len (<seg> Length

<seqg> Kint-expr?>:<int-expr?>J Slicing

for <var> 1n <seg>: lteration
<expr> 1n <seqg> Membership (Boolean)

<int-expr?>: may be <int-expr> but also can be empty

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 27

What's the difference between the sequences”?

e Strings can only store characters, lists & tuples can store arbitrary values
o Mutability: strings and tuples are immutable, lists are mutable

emy list = [1, 2, 3, 4]
my list[2] = 300
my list (1, 2, 300, 4]

300 TypeError

e my tuple = (1, 2, 3, 4); my tuple[Z

e my str = "abcdef"; my str[0] = "z" TypeError

D. Koop, CSCI 503, Spring 2021 Northern Illinois University ~ 28

LISt methods

Method Meaning

<list>.append (d) Add element 4 to end of list.

<list>.extend (s) Add all elements in s to end of list.
<list>.insert (i, d) |Insert d into list at index .

<list>.pop (i) Deletes ith element of the list and returns its value.
<list>.sort () Sort the list.

<list>.reverse () Reverse the list.

<list>.remove (d) Deletes first occurrence of 4 in list.

<list>.index (d) Returns index of first occurrence of d.
<list>.count (d) Returns the number of occurrences of d In list.

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 29

LISt methods

Method Meaninc Mutate
<list>.append (d) Add element d to end of list.

<list>.extend (s) Add all elements in s to end of list.

<list>.insert (i, d) |Insert d into list at index .

<list>.pop (i) Deletes ith element of the list and returns its value.
<list>.sort () Sort the list.

<list>.reverse () Reverse the list.

<list>.remove (d) Deletes first occurrence of 4 in list.

<list>.index (d) Returns index of first occurrence of d.
<list>.count (d) Returns the number of occurrences of d in list.

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 29

The del statement

e bop works wells for removing an element by index plus it returns the element

e Can also remove an element at index | using
- del my list[i]

e Note this Is very different syntax so | prefer pop
e But del can delete slices

- del my list[1:]]
e Also, can delete identifier names completely

- a = 32
del a
a NamekError

e [Nhis IS different than a = None

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 30

Updating collections

e [here are three ways to deal with operations that update collections:
- Returns an updated copy of the list
- Updates the collection in place
- Updates the collection in place and returns it

® list.sort and list.reverse WOrK in place and don't return it

e Common error:

- sorted list = my list.sort () sorted list = None
* |Insteaa:
- sorted list = sorted(my list)

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 31

sorted and reversed

e [FOr both sort and reverse, have sorted & reversed which are not in place

e Called with the sequence as the argument

enmy list = [7, 3, 2, 5, 1]
for d 1n sorted(my list):

print (d, end=" ") 1 2 3 5 7
enmy list = [7, 3, 2, 5, 1]
for d 1n reversed(my list):
print (d, end=" ") 1 5 2 3 7
e But this doesn't work:
- reversed list = reversed(my list)

e |f you need a new list (same as with range):

- reversed list = list(reversed(my list))

D. Koop, CSCI 503, Spring 2021 Northern Illinois University ~ 32

Reverseq sort

e Both sort and sorted have a boolean parameter reverse that will sort the list

IN reverse
emy list = [7, 3, 2, 5, 1]
my list.sort (reverse=True) my list now [7, 5, 3, 2, 1]

e for 1 1n sorted(my list, reverse=True):
print (1, end = " ") prints 7 5 3 2 1

e [here s also a key parameter that should be a function that will be called on
each element before comparisons—the outputs will be used to sort

- Example: convert to lowercase

D. Koop, CSCI 503, Spring 2021 Northern Illinois University ~ 33

Nested Sort

e By default, sorts by comparing inner elements in order
e sorted([[4,2],[1,5],[1,31,([3,5]1])

- Istelement:1 == 1 < 3 < 4

- 2nd element for equal: 3 < 5
- Result: [[1,371,[1,5],[3,51,[4,2]]

e | onger lists after shorter lists:
- sorted ([[1,2],[1]]) [[1],[1,2]]

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 34

enumerate

e Often you do not need the index when iterating through a sequence
e |f you need an index while looping through a sequence, use enumerate

e for 1, d 1n enumerate(my list):
print ("index:", 1, "element:", d)

e Fach time through the loop, It yields two items, the iIndex i & the element d

e i, d Isactually atuple

o Automatically unpacked above, can manually do this, but don't!
e for t 1n enumerate(my 1list):
1 = t[0]
d = t[l
print ("index:", 1, "element:", d)

D. Koop, CSCI 503, Spring 2021 Northern Illinois University ~ 35

enumerate

e Often you do not need the index when iterating through a sequence
e |f you need an index while looping through a sequence, use enumerate

e for 1, d 1n enumerate(my list):
print ("index:", 1, "element:", d)

e Fach time through the loop, It yields two items, the iIndex i & the element d

e i, d Isactually atuple

o Automatically unpacked above, can manually do this, but don't!
o = 1n enumerate (my list):

t | T

d = t|l
Oor1ntc

|_|.

("1ndex:", 1, "elementi—<

D. Koop, CSCI 503, Spring 2021 Northern Illinois University ~ 35

