Programming Principles in Python (CSCI 503)

Functions

Dr. David Koop

(some slides adapted from Dr. Reva Freedman)

D. Koop, CSCI 503, Spring 2021 Northern Illinois University

f, else, elif, pass

e 1f a < 10: e 1f a < 10:
print ("Small") print ("Small")
else: elif a < 100:

if a < 100: print ("Medium")
print ("Medium") elif a < 1000:

else: print ("Large")
1f a < 1000: else:

print ("Large") print ("X-Large")

else:

print ("X-Large")

¢ [ndentation is critical so else-if branches can become unwieldy (elif helps)
e Remember colons and indentation
®* pass can be used for an empty block

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 2

while, break, continue

e while <boolean expression>:
<loop-block>

e Condition is checked at the beginning and before each repeat
e break: Immediately exit the current loop

e continue: Stop loop execution and go back to the top of the loop, checking
the condition again
e while d > O:

a = get next 1nput ()
1if a > 100:
break
1f a < 10:
continue
d —= a

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 3

The Go To Statement Debate

GG To Statement Cﬂnsldered Harmful L ~ dynamie progress is only characterized when we also give to which

- call of the procedure we refer. With the inclusion of pmcedures
3 Key Words and Phrﬂ.sea go to statement; jump: mstructmn we can characterize the pmgreas of the process via a sequence of
branch instruetion, conditional clause, alternﬂ.twe clause, repet- o iual indices, the length of this sequence being equa.l to the
= itive clause, program mteIltgtbthty, program sequencing i dynamic depth of procedure calhng o g
: . CR CatEgurles 4.22,5.23,5.2¢ PR DRERORE T Let us now consider repetition clauses (like, while B I'Epeat A
- EDITOR: | SR A0 . . or repeat A untll B) Lugmally speakmg, such clausea are now -
: or 4 npumber of vears /]Ve hHe .';'.] he ob atinn . £

. became eonvmeed that the go to statement shoutd oe abohshed frem all

'hlgher level’ programming languages... Ihe go to statement as it stands Is
just too primitive; it Is too much an invitation to make a mess of one's
pregram)

been urged to do so. | | S . - namic index,” inexorably counting the ordinal number of the
ti My first remark is that, a]thﬂugh the programmer’s activity mrreapondmg current repetition. As repetition clauses (just as
- ends when he has constructed a correct program, the process procedure calls) may be applied nestedly, we find that now the
-~ taking place under control of his program is the true subject = progress of the process can always be uniquely characterlzed by a
~ matter of his activity, for if is this process that has to accomplish =~ (mixed) sequence of textual aud/er dynamie 1ndices. -
- the desired'etTect;'it_-'ia this process that in its dynamic behavior =~ The main point is that the values of these indices are nutmde
~ has to satisfy the desired specifications. Yet, once the program has ~ programmer’s control; they are generated (either by the write- up -
~ been made, the “making”’ of the currespundmg process is dele- of his program or by the dynamic evolution of the process) whether
- gated to the machine. : Lo ~ he wishes or not. They provide independent conrdmates in which
s M~v qecand reamarlk i fhuf anr intallantinal mamrans arn b hos tn dacnwiha tha meneaann Ak bl mmAanane ' ;o [DleStra 1968]

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 4

| oop Styles

¢ | oop-and-a-Half

d = get data() priming rd
while check(d) :
do stuftf
d = get data () e Assignment Expression (Walrus)
e [nfinite-Loop-Break while check(d := get data):
do stuff

while True:
d = get data ()
1f check(d) :
break
do stutftt

Northern Illinois University)

D. Koop, CSCI 503, Spring 2021

~or Loop

e for loops In Python are really for-each loops
e Always an element that Is the current element
- Can be used to iterate through iterables (containers, generators, strings)

- Gan be used for counting

e fOr 1 1n range(d):
print (1) 0 1 2 3 4

* range generates the seqguences of integers, one at a time

- range(n) > 0, 1, .., n-1
- range (start, n) —™ start, start + 1, .., start + (n-1)

- range (start, n, step)
— start, start + step, .., start + (n-1) *step

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 6

Assignment 2

e Due Monday
e Python control flow and functions
e Do not use containers like lists!
e [he /x+-1 function
¢ \lake sure to follow instructions
- Name the submitted file a2.ipynb
- Put your name and z-id In the first cell
- Label each part of the assignment using markdown
- Make sure to produce output according to specifications

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 7

http://faculty.cs.niu.edu/~dakoop/cs503-2021sp/assignment2.html

Functions

e Call a function £: £ (3) or £(3,4) or ... depending on number of parameters

e def <function—-name> (<parameter-names>) :
"""Optional docstring documenting the function"""
<function-body>

e Jdef sStands for function definition

e docstring is convention used for documentation
e Remember the colon and indentation
e Parameter list can be empty: def £ () :

Hh

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 8

Functions

e Use return to return a value

e def <functilon—-name> (<parameter-names>) :
do stutt
return res

e Can return more than one value using commas
e def <function—-name> (<parameter-names>) :

—

do stut:
return resl, res?

e Use simultaneous assignment when calling:
- a, b = do something (1,2, 5)

e |f there Is No return value, the function returns None (a special value)

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 9

Return

e As many return statements as you want
e Always end the function and go back to the calling code

e Returns do not need to match one type/structure (generally not a good idea)

e def f (a,b):
1f a < 0:
return -1
while b > 10:
b —-= a
1f b < 0O:
return "BAD"
return D

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 10

Scope

® [he scope of a variable refers to where in a program it can be referenced
e Python has three scopes:

- global: defined outside a function
- local: in a function, only valid in the function
- nonlocal: can be used with nested functions
e Python allows variables in different scopes to have the same name

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 11

Global read

o def f () : no arguments
print ("x i1n function:", X)

X = 1
£ ()

print ("x 1n main:", Xx)
e Output:

- X 1n function: 1
X 1n main: 1

e Here, the x In £ IS read from the global scope

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 12

Try to modify global

e def £ () : no arguments
X = 2
print ("x i1n function:", X)
X =1

£()
print ("x 1n main:", Xx)
e QOutput:

- X 1n function: 2
X 1n main: 1

e Here, the x In £ IS In the local scope

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 13

Global keyword

e def f(): no arguments
global x
X = 2
print ("x i1n function:", X)

X = 1
£ ()

print ("x 1n main:", Xx)
e QOutput:

- X 1n function: 2
X 1n main: 2

e Here, the x In £ IS In the global scope because of the global declaration

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 14

What is the scope of a parameter of a function®

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 15

Depends on whether Python Is
0ass-by-value or pass-by-reference

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 16

Pass by value

e Detour to C++ land:
- void f(int x) {
X =2
cout << "Value of x Inf: " << X << endl;

}

main() {
ntx =1;
f(X);
cout << "Value of x In main: " << X;

}

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 17

Pass by value

e Detour to C++ land:
- void f(int x) {
X =2
cout << "Value of x Inf: " << X << endl;

|
Output:
mainO{ Va:_ue o:i X }n r: .2
. Value of X 1n main: 1
Nt x = 1;
f(x);
cout << "Value of x In main: " << X;
|

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 17

Pass by reference

e Detour to C++ land:
- void f(int & X) {
X =2
cout << "Value of x Inf: " << X << endl;

}

main() {
ntx =1;
f(X);
cout << "Value of x In main: " << X;

}

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 18

Pass by reference

e Detour to C++ land:
- void f(int & X) {
X =2
cout << "Value of x Inf: " << X << endl;

}

Output:
maiﬂ(){ Va:_ue OoT
. Value otr
Nt x = 1;
f(X);
cout << "Value of x In main: " << X;
|

X 1n f: 2
X 1n main: 2

D. Koop, CSCI 503, Spring 2021

Northern Illinois University 18

Pass by reference

e Detour to C++ land:
- void f(int|&}x) {
X =2

cout << "Value of x Inf: " << X << endl;

}

Output:
maiﬂ(){ Va:_ue OoT
. Value otr
Nt x = 1;
f(X);
cout << "Value of x In main: " << X;
|

X 1n f: 2
X 1n main: 2

D. Koop, CSCI 503, Spring 2021

Northern Illinois University 18

s Python pass-by-value or pass-by-reference’

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 19

Nelther

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 20

Example 1

—

e def change list(inner list):
inner list = [10,9,8,7,0]

outer list = [0,1,2,3,4]
change list (outer list)
outer list (0,1,2,3,4]

¢ | 0Oks like pass by value!

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 21

Python lists

e Stores a collection of objects in order
e Created using square brackets: (0,1, 2, 3, 4]

e | ists are mutable: we can change them In place:

-my list = [0,1,2,3,4]
my list.append(d)
my list (0,1,2,3,4,5]

e Remember that integers, strings, floats are not mutable (immutable)

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 22

Example 2

—

e def change list(inner list):

1nner list.append(5)

outer list = [0,1,2,3,4]
change list (outer list)
outer list (0,1,2,3,4,5]

® | 0OKS like pass by reference!

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 23

What's going on”

D. Koop, CSCI 503, Spring 2021 Northern Illinois University =~ 24

Think about how assignment works in Python
Different than C++

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 25

Example 1

—

e def change list(inner list):
inner list = [10,9,8,7,0]

outer list = [0,1,2,3,4]
change 1list (outer list)
outer list (0,1,2,3,4]

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 26

Example 1

e def change list(inner 1list):
inner list = [10,9,8,7,0]

outer list = [0,1,2,3,4]
change 1list (outer list)
outer list (0,1,2,3,4]

o] —

[0,1,2,3,4]

. Koop, CSCI 503, Spring 2021 Northern Illinois University 27

Example 1

—

e def change list(inner list):
inner list = [10,9,8,7,6]

outer list = [0,1,2,3,4]
change 1list (outer list)
outer list (0,1,2,3,4]

. Koop, CSCI 503, Spring 2021 Northern Illinois University 28

Example 1

—

e def change list(inner list):
inner list = [10,9,8,7,0]

outer list = [0,1,2,3,4]
change 1list (outer list)
outer list # [0,1,2,3,4]

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 29

Example 2

—

e def change list(inner list):

1nner list.append(5)

outer list = [0,1,2,3,4]
change list (outer list)
outer list (0,1,2,3,4,5]

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 30

Example 2

e def change list(inner list):
1nner list.append(5)

outer list = [0,1,2,3,4]
change list (outer list)
outer list (0,1,2,3,4,5]

o] —

[0,1,2,3,4]

. Koop, CSCI 503, Spring 2021 Northern Illinois University 31

Example 2

—

e def change list(inner list):
inner list.append(5)

outer list = [0,1,2,3,4]
change list (outer list)
outer list (0,1,2,3,4,5]

o] —

[011/2/31415]

. Koop, CSCI 503, Spring 2021 Northern Illinois University ~ 32

Example 2

—

e def change list(inner list):

1nner list.append(5)

outer list = [0,1,2,3,4]
change list (outer list)
outer list # [0,1,2,3,4,5]

D. Koop, CSCI 503, Spring 2021 Northern Illinois University ~ 33

Pass Dy object reference

o AKA passing object references by value
e Python doesn't allocate space for a variable, it just links identifier to a value

e Mutability of the object determines whether other references see the change

o Any iImmutable object will act like pass by value

e Any mutable object acts like pass by reference unless it Is reassigned to a
new value

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 34

Remember: global allows assignment In functions

e def change list():
global a list
a list = [10,9,8,7,0]

a list = [0,1,2,3,4]
change 1list ()
a list (10,9,8,7, 0]

Northern Illinois University 35

D. Koop, CSCI 503, Spring 2021

Detault Parameter Values

e Can add =<value> to parameters

—

e def rectangle area(width=30, height=20):
return width * height

o All of these work:

- rectangle area () 000
- rectangle area(10) 200
- rectangle area (10, 50) 200

¢ |f the user does not pass an argument for that parameter, the parameter Is
set to the default value

e Cannot add non-default parameters after a defaulted parameter
Annf o4 N

- def—rectanglte area{wradth=30—height)

[Deitel & Deitel]

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 36

Don't use mutable values as defaults!

—

e def append to(element, to=[]):
to.append (element)
return to

emy list = append to(l2)
my list [12]

e my other lis

my other lis:

= append to(42)
(12, 42]

S
S

[K. Reitz and T. Schlusser]

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 37

https://docs.python-guide.org/writing/gotchas/

Use None as a detfault insteaa

o def append to(element, to=None):

—

1f to 1s None:

to = []
to.append (element)
return to

emy list = append to(l2)
my list [12]

e my Oother list = append to(42)

my other list (42]

e |f you're not mutating, this isn't an issue

[K. Reitz and T. Schlusser]

D. Koop, CSCI 503, Spring 2021 Northern Illinois University ~ 38

https://docs.python-guide.org/writing/gotchas/

Keyword Arguments

o Keyword arguments allow someone calling a function to specify exactly
which values they wish to specity without specifying all the values

* [his helps with long parameter lists where the caller wants to only change a
few arguments from the defaults

e def f (alpha=3, beta=4, gamma=1, delta=7, epsilon=38, zeta=2Z,
eta=0.3, theta=0.5, 10ta=0.24, kappa=0.134) :

o f (beta=12, 1o0ta=0.7)

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 39

Positional & Keyword Arguments

e (Generally, any argument can be passed as a keyword argument

—

e def f (alpha, beta, gamma=1l, delta=7/, epsilon=38, zeta=2,
eta=0.3, theta=0.5, 10ta=0.24, kappa=0.134):

e £ (5,0)
(alpha=7, beta=12, 10ota=0.7)

Fh

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 40

Position-Only Arguments

e PEP 5/0 Iintroduced position-only arguments
e Sometimes it makes sense that certain arguments must be position-only

e Certain functions (those implemented in C) only allow position-only: pow

e Add a slash (/) to delineate where keyword arguments start

e def f (alpha, beta, /, gamma=1l, delta=7, epsilon=8, zeta=2,
eta=0.3, theta=0.5, 10ta=0.24, kappa=0.134) :

- f (alpha=7, beta=12, 1ota=0.7) L RROR
£(7, 12, 10ta=0.7) WORKS

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 41

https://www.python.org/dev/peps/pep-0570/

Arbitrary Argument Containers

—

e def f (*args, **kwargs) :

* args: a list of arguments
* kwargs: a Key-value dictionary of arguments

e Stars in function signature, not in use
e Can have named arguments before these arbitrary containers
e Any values set by position will not be in kwargs:

e def f (a, *args, **kwargs):
print (args)
print (kwargs)
f (a=3, b=5) args 1s empty, kwargs has only Db

D. Koop, CSCI 503, Spring 2021 Northern Illinois University ~ 42

Programming Principles: Defining Functions

e | st arguments in an order that makes sense
- May be convention => pow(x,y) means xY
- May be In order of expected frequency used
e Use default parameters when meaningful defaults are known

e Use position-only arguments when there is no meaningful name or the syntax
might change In the future

D. Koop, CSCI 503, Spring 2021 Northern Illinois University ~ 43

Calling module functions

e Some functions exist in modules (we will discuss these more later)
e Import module

e Call functions by prepending the module name plus a dot

e 1mport math
math.logl0O (100)
math.sgrt (196)

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 44

Calling object methods

e Some functions are defined for objects like strings
® [hese are instance methods
o Call these using a similar dot-notation

e Can take arguments

e s = '"Mary'
S .upper () '"MARY '

= ! extra spaces
.Strip () 'extra spaces'

= "1+2+3+4"
.split (sep="+") [tttz 3,14

Coa

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 45

