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|dentifiers

e A sequence of letters, digits, or underscores, but...
e Also includes unicode “letters”, spacing marks, and decimals (e.g. =)

e Must begin with a letter or underscore ( )

e \\Vhy not a number”?
e Case sensitive (a is different from 2)

e Conventions:
- |dentifiers beginning with an underscore ( ) are reserved for system use

- Use underscores (a 1ong variable), not camel-case (aLongVariable)

- Keep Identifier names less than 80 characters
e Cannot be reserved words
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lypes

e Don't worry about types, but think about types
e \/ariables can "change types"”

-a = 0
a = "abc"
a = 3.14159

o Actually, the name is being moved to a different value
e YOu can find out the type of the value stored at a variable v using type (v)

e Some literal types are determined by subtle differences
- 1vs 1. (integer vs. float)

- 1.43VvS 1.435 (float vs. imaginary)

e Can do explicit type conversion (int, str, float)
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Assignment

e [he =operator: a = 34;c = (a + b) ** 2
e Python variables are actually pointers to objects
e Also, augmented assignment: +=, -=, *=, /=, / /=, **=

X = x + 1
vy = X

-

X = 472
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Simultaneous Assignment & Assignment Expressions

e Simultaneous assignment leaves less room for error:

- XY T Y X
e Assignment expressions use the walrus operator : =
- (my pi := 3.14159) * r ** 2 + a ** 0.5/my pi1l

- Use cases: if/while statement check than use, comprehensions
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Boolean EXPressions

e [ype bool: True Of False

e Note capitalization!
e Comparison Operators: <, <=, >, >=, ==, |=
- Double equals (==) checks for equal values,
- Assignment (=) assigns values to variables
e Boolean operators: not, and, or
- Different from many other languages (!, &s&, 1)
e \More:
- is: exact same object (usually a variable is None)
- in: checks if a value is in a collection (34 in my list)
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Assignment 2

e Due next Monday
e Python control flow and functions
e Do not use containers like lists!
e [he /x+-1 function
¢ \lake sure to follow instructions
- Name the submitted file a2.ipynb
- Put your name and z-id In the first cell
- Label each part of the assignment using markdown
- Make sure to produce output according to specifications
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http://faculty.cs.niu.edu/~dakoop/cs503-2021sp/assignment2.html

T and else

e Blocks only executed if the

condition Is satisfied e if a < 34:
e if <boolean expression>: b = 5
<then-block> else:
. b = a - 34

e 1f <boolean expression>:
<then-block>
else:
<else-block>

e Remember colon (:)
e Remember indentation
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elif IS a shortcut

e 1f a < 10: e 1f a < 10:
print ("Small") print ("Small")
else: elif a < 100:

1f a < 100: print ("Medium")
print ("Medium") elif a < 1000:

else: print ("Large")
1f a < 1000: else:

print ("Large") print ("X-Large")

else:

print ("X-Large")

¢ [ndentation is critical so else-if branches can become unwieldy (elif helps)
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NDASS

® DAss IS a N0-0p
e Python doesn't allow an empty block so pass helps with this

e Used when commenting out code blocks
e 1f a < 10:
print ("Small")
elif a < 100:
print ("Medium")
elif a < 1000:
print ("Large")
Pass
else:
print ("X-Large")

<- block would be empty (comments don't count)
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while

® While repeats the execution of the block

e while <boolean expression>:
<loop-block>

e Condition is checked at the beginning and before each repeat
e |[f condition IS False, l00p Will never execute

e Don't use a while loop to iterate (use for loop instead)

e Example:

- d = 100
while d > O:
a = get next 1nput ()
d -= a
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oreak and continue

e pbreak: iImmediately exit the current loop

e continue: stop loop execution and go back to the top of the loop, checking
the condition again
e while d > O0O:

a = get next 1input ()
1f a > 100:
break
1f a < 10:
continue
d —= a

® [hese are similar to goto statements in that they can jump from one
statement to another part of the code but scoped to the current loop
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The Go To Statement Debate

GG To Statement Cﬂnsldered Harmful L ~ dynamie progress is only characterized when we also give to which

- call of the procedure we refer. With the inclusion of pmcedures
3 Key Words and Phrﬂ.sea go to statement; jump mstructmn we can characterize the pmgreas of the process via a sequence of
_-__ branch instruction, conditional clause, alternﬂ.twe clause, repet- . . indices, the length of this sequence being equal to the
~  itive clause, program mteIltgtbthty, program sequencing i dynamic depth of procedure-éalling. el -
: . CR CatEgurles 4.22,5.23,5.2¢ PR DRERORE T Let us now consider repetition clauses (like, while B I'Epeat A
- EDITOR: | SR A0 . . or repeat A untll B) Lugmally speakmg, such clausea are now -
- or 4 number of vears gqve he .';'. ] he ob atinn | aT:

. became eonvmeed that the go to statement shoutd oe abohshed frem all

'hlgher level’ programming languages... Ihe go to statement as it stands Is
just too primitive; it Is too much an invitation to make a mess of one's
pregram )

been urged to do so. | | S . - namic index,” inexorably counting the ordinal number of the
ti My first remark is that, a]thﬂugh the programmer’s activity mrreapondmg current repetition. As repetition clauses (just as
- ends when he has constructed a correct program, the process  procedure calls) may be applied nestedly, we find that now the
-~ taking place under control of his program is the true subject = progress of the process can always be uniquely characterlzed by a
~ matter of his activity, for if is this process that has to accomplish =~ (mixed) sequence of textual aud/er dynamie 1ndices. -
- the desired'etTect;'it_-'ia this process that in its dynamic behavior =~ The main point is that the values of these indices are nutmde
~ has to satisfy the desired specifications. Yet, once the program has ~ programmer’s control; they are generated (either by the write- up -
~ been made, the “making”’ of the currespundmg process is dele- of his program or by the dynamic evolution of the process) whether
- gated to the machine. : Lo ~ he wishes or not. They provide independent conrdmates in which
s M~v qecand reamarlk i fhuf anr intallantinal mamrans arn b hos tn dacnwiha tha meneaann Ak bl mmAanane ' ;o [DleStra 1968]
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The Go To Statement Debate

fori:=1ton 1:=1;

1:=1;
do begin repeat repeat
for j :=1tondo j:=1; J:=1;
ifx[i, j]<>0 allzero := true; while (j<{=n)
then goto reject; while (J<=n) and allzero and (x[i, j] =0) do
writeln do begin 1 :=73+1;
('The first all-zero if x[1i, j]<>0 i:=1i4+1;
rowis ', i); then allzero := false; until (1 >n)or (3J>n);
break; J:=3+1; if J>n
reject: end; end; thenwriteln
1 :=141; ('The first all-zero
until (i>n) or allzero; rowis', 1—1);
if 1i<<=n

thenwriteln
('The first all-zero
yowls ', 1i—1);

"All of my experiences compel me to conclude that it is time to part from the
dogma of GOTO-less programming. It has failed to prove its merit"

[Rubin, 1987]
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Programming Principles: break, continue, goto

e ACM the published a number of critigues of Rubin's letter, Dijkstra also wrote
some notes on this: bugs, maybe the language Is bad...

e \Most computer scientists agree that the problem was over-use, not that the
statement is never useful

e Break and continue are more structured gotos because they apply only to the
current block

e Breaks and continues at the top of a loop are better
o Multi-level breaks are annoying (compare with return statements in functions)
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Continue at the beginning of a loop

¢ | ke elif, can help with indentation

e while x >= 0: e while x >= 0:
d = get data() d = get data ()
1f d 1s not None: 1f d 1s None:
do stutff continue
do stuft

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 16



| oop Styles

¢ | oop-and-a-Half

d = get data() priming rd
while check(d) :
do stuftf
d = get data () o Better way?

¢ |Infinite-Loop-Break

while True:
d = get data()
1f check (d) :
break
do stutfttf
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| oop Styles

¢ | oop-and-a-Half

d = get data() priming rd
while check(d) :
do stuftf
d = get data () e Assignment Expression (Walrus)
e [nfinite-Loop-Break while check(d := get data):
do stuff

while True:
d = get data ()
1f check(d) :
break
do stutftt
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do-while

e do-while loops always execute at least once

* [here Is no do-while loop construct in Python

e Can set the condition so that it is always True first time through the loop
e ...0or move the break to the end of the loop
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| ooping Errors

o while loop - summing the numbers 1 to 10
n = 10
cur sum = 0
sum of n numbers

1 =0
while 1 <= n:

1 =1 + 1

Cur sum = Ccur sum + 1

print ("The sum of the numbers from 1 to", n, "1is ", cur sum)

[The Carpentries, CC-BY 4.0]
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https://datacarpentry.org/python-socialsci/03-control-structures/index.html

| ooping Errors

o while loop - summing the numbers 1 to 10
n = 10
cur sum = 0
sum of n numbers
1 =0

while 1 <= n:
cur sum = cur sum + 1
1 =1 4+ 1

print ("The sum of the numbers from 1 to", n, "1is ", cur sum)

[The Carpentries, CC-BY 4.0]
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| ooping Errors

o while loop - summing the numbers 1 to 10
n = 10
cur sum = 0

)

sum of n numbers
1 =0

while 1 = n:

cur sum
1 =1 + 1

cur sum + 1

print ("The sum of the numbers from 1 to", n, "1is ", cur sum)

[The Carpentries, CC-BY 4.0]
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~or Loop

e for loops In Python are really for-each loops
e Always an element that Is the current element
- Can be used to iterate through iterables (containers, generators, strings)

- Gan be used for counting

e fOr 1 1n range(d):
print (1) 0 1 2 3 4

* range generates the numbers 0,1,2,3,4
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Range

e Python has lists which allow enumeration of all possibilities: [0,1,2,3,4]
e Can use these in for loops

e for 1 i1in [0,1,2,3,4]:
print (1) 0 1 2 3 4

® but this is less efficient than range (which is a generator)

e fOr 1 1n range(d):
print (1) 0 1 2 3 4

e | ist must be stored, range doesn't require storage

e Printing a range doesn't work as expected:
- print (range (95)) prints "range (0, 5)"

- print(list (range(9)) prints "[O0, 1, 2, 3, 4]"
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Range

o Different method signatures
- range(n) > 0, 1, .., n-1
- range (start, n) —™ start, start + 1, .., start + (n-1)

- range (start, n, step)
— start, start + step, .., start + (n-1) *step

e Negative steps:
- range (0,4,-1) <nothing>
- range (4,0, -1) 4 3 2 1

e Hoating-point arguments are not allowed
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| ooping Errors

o for loop - summing the numbers 1 to 10
n = 10
cur sum = 0

for 1 1n range(n):
cCur sum += 1

—

print ("The sum of the numbers from 1 to", n, "1is ", cur sum)
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| ooping Errors

o for loop - summing the numbers 1 to 10
n = 10
cur sum = 0

for 1 1n range(nt+l):
cCur sum += 1

—

print ("The sum of the numbers from 1 to", n, "1is ", cur sum)
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| ooping Errors

o for loop - summing the numbers 1 to 10
n = 10
cur sum = 0

for 1 1n range(l, n+1l):
cCur sum += 1

—

print ("The sum of the numbers from 1 to", n, "1is ", cur sum)
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Functions

e Call a function £: £ (3) or £(3,4) or ... depending on number of parameters

e def <function—-name> (<parameter-names>) :
"""Optional docstring documenting the function"""
<function-body>

e Jdef sStands for function definition

e docstring is convention used for documentation
e Remember the colon and indentation
e Parameter list can be empty: def £ () :

Hh
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Functions

e Use return to return a value

e def <functilon—-name> (<parameter-names>) :
do stutt
return res

e Can return more than one value using commas
e def <function—-name> (<parameter-names>) :

—

do stut:
return resl, res?

e Use simultaneous assignment when calling:
- a, b = do something (1,2, 5)

e |f there Is No return value, the function returns None (a special value)
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