Programming Principles in Python (CSCI 503)

Control Statements

Dr. David Koop

(some slides adapted from Dr. Reva Freedman)

D. Koop, CSCI 503, Spring 2021 Northern Illinois University



|dentifiers

e A sequence of letters, digits, or underscores, but...
e Also includes unicode “letters”, spacing marks, and decimals (e.g. =)

e Must begin with a letter or underscore ( )

e \\Vhy not a number”?
e Case sensitive (a is different from 2)

e Conventions:
- |dentifiers beginning with an underscore ( ) are reserved for system use

- Use underscores (a 1ong variable), not camel-case (aLongVariable)

- Keep Identifier names less than 80 characters
e Cannot be reserved words

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 2




lypes

e Don't worry about types, but think about types
e \/ariables can "change types"”

-a = 0
a = "abc"
a = 3.14159

o Actually, the name is being moved to a different value
e YOu can find out the type of the value stored at a variable v using type (v)

e Some literal types are determined by subtle differences
- 1vs 1. (integer vs. float)

- 1.43VvS 1.435 (float vs. imaginary)

e Can do explicit type conversion (int, str, float)

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 3



Assignment

e [he =operator: a = 34;c = (a + b) ** 2
e Python variables are actually pointers to objects
e Also, augmented assignment: +=, -=, *=, /=, / /=, **=

X = x + 1
vy = X

-

X = 472

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 4



Simultaneous Assignment & Assignment Expressions

e Simultaneous assignment leaves less room for error:

- XY T Y X
e Assignment expressions use the walrus operator : =
- (my pi := 3.14159) * r ** 2 + a ** 0.5/my pi1l

- Use cases: if/while statement check than use, comprehensions

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 5



Boolean EXPressions

e [ype bool: True Of False

e Note capitalization!
e Comparison Operators: <, <=, >, >=, ==, |=
- Double equals (==) checks for equal values,
- Assignment (=) assigns values to variables
e Boolean operators: not, and, or
- Different from many other languages (!, &s&, 1)
e \More:
- is: exact same object (usually a variable is None)
- in: checks if a value is in a collection (34 in my list)

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 6




Assignment 2

e Due next Monday
e Python control flow and functions
e Do not use containers like lists!
e [he /x+-1 function
¢ \lake sure to follow instructions
- Name the submitted file a2.ipynb
- Put your name and z-id In the first cell
- Label each part of the assignment using markdown
- Make sure to produce output according to specifications

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 7


http://faculty.cs.niu.edu/~dakoop/cs503-2021sp/assignment2.html

T and else

e Blocks only executed if the

condition Is satisfied e if a < 34:
e if <boolean expression>: b = 5
<then-block> else:
. b = a - 34

e 1f <boolean expression>:
<then-block>
else:
<else-block>

e Remember colon (:)
e Remember indentation

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 8



elif IS a shortcut

e 1f a < 10: e 1f a < 10:
print ("Small") print ("Small")
else: elif a < 100:

1f a < 100: print ("Medium")
print ("Medium") elif a < 1000:

else: print ("Large")
1f a < 1000: else:

print ("Large") print ("X-Large")

else:

print ("X-Large")

¢ [ndentation is critical so else-if branches can become unwieldy (elif helps)

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 9




NDASS

® DAss IS a N0-0p
e Python doesn't allow an empty block so pass helps with this

e Used when commenting out code blocks
e 1f a < 10:
print ("Small")
elif a < 100:
print ("Medium")
elif a < 1000:
print ("Large")
Pass
else:
print ("X-Large")

<- block would be empty (comments don't count)

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 10




while

® While repeats the execution of the block

e while <boolean expression>:
<loop-block>

e Condition is checked at the beginning and before each repeat
e |[f condition IS False, l00p Will never execute

e Don't use a while loop to iterate (use for loop instead)

e Example:

- d = 100
while d > O:
a = get next 1nput ()
d -= a

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 11




oreak and continue

e pbreak: iImmediately exit the current loop

e continue: stop loop execution and go back to the top of the loop, checking
the condition again
e while d > O0O:

a = get next 1input ()
1f a > 100:
break
1f a < 10:
continue
d —= a

® [hese are similar to goto statements in that they can jump from one
statement to another part of the code but scoped to the current loop

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 12




The Go To Statement Debate

GG To Statement Cﬂnsldered Harmful L ~ dynamie progress is only characterized when we also give to which

- call of the procedure we refer. With the inclusion of pmcedures
3 Key Words and Phrﬂ.sea go to statement; jump mstructmn we can characterize the pmgreas of the process via a sequence of
_-__ branch instruction, conditional clause, alternﬂ.twe clause, repet- . . indices, the length of this sequence being equal to the
~  itive clause, program mteIltgtbthty, program sequencing i dynamic depth of procedure-éalling. el -
: . CR CatEgurles 4.22,5.23,5.2¢ PR DRERORE T Let us now consider repetition clauses (like, while B I'Epeat A
- EDITOR: | SR A0 . . or repeat A untll B) Lugmally speakmg, such clausea are now -
- or 4 number of vears gqve he .';'. ] he ob atinn | aT:

. became eonvmeed that the go to statement shoutd oe abohshed frem all

'hlgher level’ programming languages... Ihe go to statement as it stands Is
just too primitive; it Is too much an invitation to make a mess of one's
pregram )

been urged to do so. | | S . - namic index,” inexorably counting the ordinal number of the
ti My first remark is that, a]thﬂugh the programmer’s activity mrreapondmg current repetition. As repetition clauses (just as
- ends when he has constructed a correct program, the process  procedure calls) may be applied nestedly, we find that now the
-~ taking place under control of his program is the true subject = progress of the process can always be uniquely characterlzed by a
~ matter of his activity, for if is this process that has to accomplish =~ (mixed) sequence of textual aud/er dynamie 1ndices. -
- the desired'etTect;'it_-'ia this process that in its dynamic behavior =~ The main point is that the values of these indices are nutmde
~ has to satisfy the desired specifications. Yet, once the program has ~ programmer’s control; they are generated (either by the write- up -
~ been made, the “making”’ of the currespundmg process is dele- of his program or by the dynamic evolution of the process) whether
- gated to the machine. : Lo ~ he wishes or not. They provide independent conrdmates in which
s M~v qecand reamarlk i fhuf anr intallantinal mamrans arn b hos tn dacnwiha tha meneaann Ak bl mmAanane ' ;o [DleStra 1968]

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 13



The Go To Statement Debate

fori:=1ton 1:=1;

1:=1;
do begin repeat repeat
for j :=1tondo j:=1; J:=1;
ifx[i, j]<>0 allzero := true; while (j<{=n)
then goto reject; while (J<=n) and allzero and (x[i, j] =0) do
writeln do begin 1 :=73+1;
('The first all-zero if x[1i, j]<>0 i:=1i4+1;
rowis ', i); then allzero := false; until (1 >n)or (3J>n);
break; J:=3+1; if J>n
reject: end; end; thenwriteln
1 :=141; ('The first all-zero
until (i>n) or allzero; rowis', 1—1);
if 1i<<=n

thenwriteln
('The first all-zero
yowls ', 1i—1);

"All of my experiences compel me to conclude that it is time to part from the
dogma of GOTO-less programming. It has failed to prove its merit"

[Rubin, 1987]
D. Koop, CSCI 503, Spring 2021 Northern Illinois University 14




Programming Principles: break, continue, goto

e ACM the published a number of critigues of Rubin's letter, Dijkstra also wrote
some notes on this: bugs, maybe the language Is bad...

e \Most computer scientists agree that the problem was over-use, not that the
statement is never useful

e Break and continue are more structured gotos because they apply only to the
current block

e Breaks and continues at the top of a loop are better
o Multi-level breaks are annoying (compare with return statements in functions)

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 15




Continue at the beginning of a loop

¢ | ke elif, can help with indentation

e while x >= 0: e while x >= 0:
d = get data() d = get data ()
1f d 1s not None: 1f d 1s None:
do stutff continue
do stuft

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 16



| oop Styles

¢ | oop-and-a-Half

d = get data() priming rd
while check(d) :
do stuftf
d = get data () o Better way?

¢ |Infinite-Loop-Break

while True:
d = get data()
1f check (d) :
break
do stutfttf

Northern Illinois University 17

D. Koop, CSCI 503, Spring 2021



| oop Styles

¢ | oop-and-a-Half

d = get data() priming rd
while check(d) :
do stuftf
d = get data () e Assignment Expression (Walrus)
e [nfinite-Loop-Break while check(d := get data):
do stuff

while True:
d = get data ()
1f check(d) :
break
do stutftt

Northern Illinois University 18

D. Koop, CSCI 503, Spring 2021



do-while

e do-while loops always execute at least once

* [here Is no do-while loop construct in Python

e Can set the condition so that it is always True first time through the loop
e ...0or move the break to the end of the loop

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 19



| ooping Errors

o while loop - summing the numbers 1 to 10
n = 10
cur sum = 0
sum of n numbers

1 =0
while 1 <= n:

1 =1 + 1

Cur sum = Ccur sum + 1

print ("The sum of the numbers from 1 to", n, "1is ", cur sum)

[The Carpentries, CC-BY 4.0]

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 20


https://datacarpentry.org/python-socialsci/03-control-structures/index.html

| ooping Errors

o while loop - summing the numbers 1 to 10
n = 10
cur sum = 0
sum of n numbers
1 =0

while 1 <= n:
cur sum = cur sum + 1
1 =1 4+ 1

print ("The sum of the numbers from 1 to", n, "1is ", cur sum)

[The Carpentries, CC-BY 4.0]

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 21


https://datacarpentry.org/python-socialsci/03-control-structures/index.html

| ooping Errors

o while loop - summing the numbers 1 to 10
n = 10
cur sum = 0

)

sum of n numbers
1 =0

while 1 = n:

cur sum
1 =1 + 1

cur sum + 1

print ("The sum of the numbers from 1 to", n, "1is ", cur sum)

[The Carpentries, CC-BY 4.0]

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 22


https://datacarpentry.org/python-socialsci/03-control-structures/index.html

~or Loop

e for loops In Python are really for-each loops
e Always an element that Is the current element
- Can be used to iterate through iterables (containers, generators, strings)

- Gan be used for counting

e fOr 1 1n range(d):
print (1) 0 1 2 3 4

* range generates the numbers 0,1,2,3,4

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 23




Range

e Python has lists which allow enumeration of all possibilities: [0,1,2,3,4]
e Can use these in for loops

e for 1 i1in [0,1,2,3,4]:
print (1) 0 1 2 3 4

® but this is less efficient than range (which is a generator)

e fOr 1 1n range(d):
print (1) 0 1 2 3 4

e | ist must be stored, range doesn't require storage

e Printing a range doesn't work as expected:
- print (range (95)) prints "range (0, 5)"

- print(list (range(9)) prints "[O0, 1, 2, 3, 4]"

D. Koop, CSCI 503, Spring 2021 Northern Illinois University =~ 24



Range

o Different method signatures
- range(n) > 0, 1, .., n-1
- range (start, n) —™ start, start + 1, .., start + (n-1)

- range (start, n, step)
— start, start + step, .., start + (n-1) *step

e Negative steps:
- range (0,4,-1) <nothing>
- range (4,0, -1) 4 3 2 1

e Hoating-point arguments are not allowed

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 25




| ooping Errors

o for loop - summing the numbers 1 to 10
n = 10
cur sum = 0

for 1 1n range(n):
cCur sum += 1

—

print ("The sum of the numbers from 1 to", n, "1is ", cur sum)

. Koop, CSCI 503, Spring 2021 Northern Illinois University =~ 26




| ooping Errors

o for loop - summing the numbers 1 to 10
n = 10
cur sum = 0

for 1 1n range(nt+l):
cCur sum += 1

—

print ("The sum of the numbers from 1 to", n, "1is ", cur sum)

. Koop, CSCI 503, Spring 2021 Northern Illinois University 27




| ooping Errors

o for loop - summing the numbers 1 to 10
n = 10
cur sum = 0

for 1 1n range(l, n+1l):
cCur sum += 1

—

print ("The sum of the numbers from 1 to", n, "1is ", cur sum)

. Koop, CSCI 503, Spring 2021 Northern Illinois University 28




Functions

e Call a function £: £ (3) or £(3,4) or ... depending on number of parameters

e def <function—-name> (<parameter-names>) :
"""Optional docstring documenting the function"""
<function-body>

e Jdef sStands for function definition

e docstring is convention used for documentation
e Remember the colon and indentation
e Parameter list can be empty: def £ () :

Hh

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 29




Functions

e Use return to return a value

e def <functilon—-name> (<parameter-names>) :
do stutt
return res

e Can return more than one value using commas
e def <function—-name> (<parameter-names>) :

—

do stut:
return resl, res?

e Use simultaneous assignment when calling:
- a, b = do something (1,2, 5)

e |f there Is No return value, the function returns None (a special value)

D. Koop, CSCI 503, Spring 2021 Northern Illinois University 30




