
Programming Principles in Python (CSCI 503)

Syntax & Types

Dr. David Koop

(some slides adapted from Dr. Reva Freedman)

D. Koop, CSCI 503, Spring 2021

Administrivia
• Course Web Site
• TA: Palak Jalota (Blackboard Collaborate)
• Syllabus
- Plagiarism
- Accommodations

• Assignments
• Tests: 2 In-Class (Feb. 17, Mar. 29) plus Final (Apr. 26)

2D. Koop, CSCI 503, Spring 2021

http://faculty.cs.niu.edu/~dakoop/cs503-2021sp

Using Python & JupyterLab on Course Server
• https://tiger.cs.niu.edu/jupyter/
• Login with you Z-ID
• You will receive an email with your password
• Advanced:
- Can add your own conda environments in your user directory

3D. Koop, CSCI 503, Spring 2021

https://tiger.cs.niu.edu/jupyter/

Using Python & JupyterLab Locally
• www.anaconda.com/download/
• Anaconda has JupyterLab
• Use Python 3.8
• Anaconda Navigator
- GUI application for managing Python

environment
- Can install packages
- Can start JupyterLab

• Can also use the shell to do this:
- $ jupyter lab

- $ conda install <pkg_name>

4D. Koop, CSCI 503, Spring 2021

https://www.anaconda.com/download/

Zen of Python
• Written in 1999 by T. Peters in a message to Python mailing list
• Attempt to channel Guido van Rossum's design principles
• 20 aphorisms, 19 written, 1 left for Guido to complete (never done)
• Archived as PEP 20
• Added as an easter egg to python (import this)
• Much to be deciphered, in no way a legal document
• Jokes embedded
• Commentary by A.-R. Janhangeer

5D. Koop, CSCI 503, Spring 2021

https://www.python.org/dev/peps/pep-0020/
https://www.codementor.io/@abdurrahmaanj/the-zen-of-python-as-related-by-masters-1adi3kuiwy

Explicit Code
• Goes along with complexity
• Bad:

def make_complex(*args):
 x, y = args
 return dict(**locals())

• Good
def make_complex(x, y):
 return {'x': x, 'y': y}

6

[The Hitchhiker's Guide to Python]
D. Koop, CSCI 503, Spring 2021

https://docs.python-guide.org/writing/style/#zen-of-python

Don't Repeat Yourself
• "Two or more, use a for" [Dijkstra]
• Rule of Three: [Roberts]
- Don't copy-and-paste more than once
- Refactor into methods

• Repeated code is harder to maintain
• Bad

f1 = load_file('f1.dat')
r1 = get_cost(f1)
f2 = load_file('f2.dat')
r2 = get_cost(f2)
f3 = load_file('f3.dat')
r3 = get_cost(f3)

7D. Koop, CSCI 503, Spring 2021

• Good
for i in range(1,4):
 f = load_file(f'f{i}.dat')
 r = get_cost(f)

Multiple Types of Output

8D. Koop, CSCI 503, Spring 2021

stdout

display

output

stderr

Multiple Types of Notebook Output
• stdout: where print commands go
• stderr: where error messages go
• display: special output channel generally used to show rich outputs
• output: same as display but used to display the value of the last line of a cell
- Note: some cells do not have output (or output is None)

9D. Koop, CSCI 503, Spring 2021

input()
• Not used much in practice (just in Assignment 1)
• Usually, just set the variables in code — this is clearer
• You can prompt the user for input using input()
- Returns a string
- Can be converted to other types

• Jupyter shows the prompt and an input box
• Example: input("Enter a state abbreviation:")

10D. Koop, CSCI 503, Spring 2021

Assignment 1
• Due Thursday
• Get acquainted with Python using notebooks
• Make sure to follow instructions
- Name the submitted file a1.ipynb
- Put your name and z-id in the first cell
- Label each part of the assignment using markdown
- Make sure to produce output according to specifications

11D. Koop, CSCI 503, Spring 2021

http://faculty.cs.niu.edu/~dakoop/cs503-2021sp/assignment1.html

Assignment 2
• Out soon (hopefully tomorrow)

12D. Koop, CSCI 503, Spring 2021

Print function
•print("Welcome Jane")

• Can also print variables:
name = "Jane"
print("Welcome,", name)

13D. Koop, CSCI 503, Spring 2021

Python Math and String "Math"
• Standard Operators: +, -, *, /, %
• Division "does what you want" (new in v3)
- 5 / 2 = 2.5
- 5 // 2 = 2 # use // for integer division

• Shortcuts: +=, -=, *=
• No ++, --
• Exponentiation (Power): **
• Order of operations and parentheses: (4 - 3 - 1 vs. 4 - (3 - 1))
• "abc" + "def"

• "abc" * 3

14D. Koop, CSCI 503, Spring 2021

Python Strings
• Strings can be delimited by single or double quotes

- "abc" and 'abc' are exactly the same thing
- Easier use of quotes in strings: "Joe's" or 'He said "Stop!"'

• Triple quotes allow content to go across lines and preserves linebreaks
- """This is another
string"""

• String concatenation: "abc" + "def"
• Repetition: "abc" * 3
• Special characters: \n \t like Java/C++

15D. Koop, CSCI 503, Spring 2021

Expression Rules
• Involve
- Literals (1, "abc"),
- Variables (a, my_height), and
- Operators (+,-*,/,//,**)

• Spaces are irrelevant within an expression
- a + 34 # ok

• Standard precedence rules
- Parentheses, exponentiation, mult/div, add/sub
- Left to right at each level

• Also boolean expressions

16D. Koop, CSCI 503, Spring 2021

Python Variables and Types
• No declaration apart from assignment, no need for types
• Variables are names, not memory locations
a = 0
a = "abc"
a = 3.14159

• Strings are a type along with integer and floats
- + containers (lists, dictionary)
- + classes

17D. Koop, CSCI 503, Spring 2021

Identifiers
• A sequence of letters, digits, or underscores, but…
• Also includes unicode "letters", spacing marks, and decimals (e.g. Σ)
• Must begin with a letter or underscore (_)
• Why not a number?

18D. Koop, CSCI 503, Spring 2021

Identifiers
• A sequence of letters, digits, or underscores, but…
• Also includes unicode "letters", spacing marks, and decimals (e.g. Σ)
• Must begin with a letter or underscore (_)
• Why not a number?
• Case sensitive (a is different from A)
• Conventions:
- Identifiers beginning with an underscore (_) are reserved for system use
- Use underscores (a_long_variable), not camel-case (aLongVariable)
- Keep identifier names less than 80 characters

• Cannot be reserved words

19D. Koop, CSCI 503, Spring 2021

Reserved Words and Reassigning builtins
• Some words cannot serve as identifiers (called keywords in Python)

- import keyword
keyword.kwlist

- ['False', 'None', 'True', 'and', 'as', 'assert', 'async',
'await', 'break', 'class', 'continue', 'def', 'del',
'elif', 'else', 'except', 'finally', 'for', 'from',
'global', 'if', 'import', 'in', 'is', 'lambda', 'nonlocal',
'not', 'or', 'pass', 'raise', 'return', 'try', 'while',
'with', 'yield']

- False = True # SyntaxError

• Some other words (python's builtins) can, but this can cause problems
- int = 34
int("12") # TypeError

20D. Koop, CSCI 503, Spring 2021

Programming Principle: Use Meaningful Identifiers
• Show intention:
- Bad: var34
- Good: time_difference

• Easy pronunciation: Not egészségedre (perhaps ok if you're Hungarian)
• Simple but technical:
- Bad: in_order_list_of_jobs
- Good: job_queue

• Be consistent:
- Bad: user_list and groups
- Good: user_list and group_list

21D. Koop, CSCI 503, Spring 2021

Types
• Don't worry about types, but think about types
• Variables can "change types"

- a = 0
a = "abc"
a = 3.14159

• Actually, the name is being moved to a different value
• You can find out the type of the value stored at a variable v using type(v)
• Some literal types are determined by subtle differences

- 1 vs 1. (integer vs. float)
- 1.43 vs 1.43j (float vs. imaginary)
- '234' vs b'234' (string vs. byte string)

22D. Koop, CSCI 503, Spring 2021

Type Conversion
• Python converts integers to floats when types are mixed

- 1 + 3.4 # evaluates to 4.4 (float)

• Functions can return different types than inputs
- round(3.9) # evaluates to 4 (int)

• Can do explicit type conversion
- int(3.9) # evaluates to 3 (int)

- float(123) # evaluates to 123. (float)

- int("123") # evaluates to 123 (int)

- str(123) # evaluates to "123" (string)

23D. Koop, CSCI 503, Spring 2021

Numeric Precision
• Integers have infinite precision and are as big as you want them

- 93326215443944152681699238856266700490715968264381621468592
96389521759999322991560894146397615651828625369792082722375
8251185210916864000000000000000000000000

• Floats do not have infinite precision but still hold large numbers (double-precision)
- 9.33262154439441e+157

- Python keeps 17 significant digits
- Python by default only prints up to 12 (many times less)

• How could you store a floating point number with infinite precision?
• Python has support for infinite precision (Decimal)

24D. Koop, CSCI 503, Spring 2021

Assignment
• The = operator
• Can assign a literal, another variable, or any expression
- a = 34
- b = a
- c = (a + b) ** 2

• Cannot use this operator in the middle of an expression, like in C++
• However, Python 3.8 added a new operator (the "walrus") that allows this

25D. Koop, CSCI 503, Spring 2021

Assignment
• Python variables are actually pointers to objects

26D. Koop, CSCI 503, Spring 2021

x 42

x 42

43

y

x = 42 x = x + 1
y = x

Assignment
• Other languages:

27D. Koop, CSCI 503, Spring 2021

42

43

43

int x = 42; x = x + 1;
int y = x;

x

x

y

Augmented Assignment
• Shorthand for mutation of a variable's value stored back in the same variable
• i += 1 # same thing as i = i + 1

• +=, -=, *=, /=, //=, **=
• Python does not have ++ or --

28D. Koop, CSCI 503, Spring 2021

Simultaneous Assignment
• Feature that doesn't appear in many other languages
• Allows multiple expressions to be assigned to different variables with one

assignment
- a, b = 34 ** 2, 400 / 24

• Commas separate the variables and expressions
• Most useful for swapping variables

- a, b = b, a
• How does this usually work?

29D. Koop, CSCI 503, Spring 2021

Simultaneous Assignment
• In most languages, this requires another variable

- x_old = x
x = y
y = x_old

• Simultaneous assignment leaves less room for error:
- x,y = y,x

• Also useful for unpacking a collection of values:
- dateStr = "03/08/2014"
monthStr, dayStr, yearStr = dateStr.split("/")

30D. Koop, CSCI 503, Spring 2021

Assignment Expressions
• AKA the "walrus" operator :=
• Names a value that can be used but also referenced in the rest of the

expression
• (my_pi := 3.14159) * r ** 2 + a ** 0.5/my_pi

• Use cases: if/while statement check than use, comprehensions
• Supported in Python 3.8+

31D. Koop, CSCI 503, Spring 2021

Assignment Expressions
• Contentious discussion on adding to the language
- "There should be one-- and preferably only one --obvious way to do it"
- Leads to different coding styles

• Adopted, and community moving on to best practices

32D. Koop, CSCI 503, Spring 2021

Boolean Expressions
• Type bool: True or False
• Note capitalization!
• Comparison Operators: <, <=, >, >=, ==, !=
- Double equals (==) checks for equal values,
- Assignment (=) assigns values to variables

• Boolean operators: not, and, or
- Different from many other languages (!, &&, ||)

• More:
- is: exact same object (usually a_variable is None)
- in: checks if a value is in a collection (34 in my_list)

33D. Koop, CSCI 503, Spring 2021

