Programming Principles in Python (CSCI 503/490)

Data

Dr. David Koop

pandas

- Contains high-level data structures and manipulation tools designed to make data analysis fast and easy in Python
- Built on top of NumPy
- Built with the following requirements:
 - Data structures with labeled axes (aligning data)
 - Support time series data
 - Do arithmetic operations that include metadata (labels)
 - Handle missing data
 - Add merge and relational operations

Series

- A one-dimensional array (with a type) with an index
- Index defaults to numbers but can also be text (like a dictionary)
- Allows easier reference to specific items
- obj = pd.Series([7,14,-2,1])
- Basically two arrays: obj.values and obj.index
- Can specify the index explicitly and use strings

• Kind of like fixed-length, ordered dictionary + can create from a dictionary

```
• obj3 = pd.Series({'Ohio': 35000, 'Texas': 71000, 'Oregon': 16000, 'Utah': 5000})
```

- A dictionary of Series (labels for each series)
- A spreadsheet with row keys (the index) and column headers
- Has an index shared with each series
- Allows easy reference to any cell

- Index is automatically assigned just as with a series but can be passed in as well via index kwarg
- Can reassign column names by passing columns kwarg

DataFrame Access and Manipulation

- df.values → 2D NumPy array
- Accessing a column:
 - df["<column>"]
 - df.<column>
 - Both return Series
 - Dot syntax only works when the column is a valid identifier
- Assigning to a column:

df = pd.read_csv('penguins_lter.csv')

	studyName	Sample Number	Species	Region	Island	Stage	Individual ID	Clutch Completion	Date Egg	Culmen Length (mm)
0	PAL0708	1	Adelie Penguin (Pygoscelis adeliae)	Anvers	Torgersen	Adult, 1 Egg Stage	N1A1	Yes	11/11/07	39.1
1	PAL0708	2	Adelie Penguin (Pygoscelis adeliae)	Anvers	Torgersen	Adult, 1 Egg Stage	N1A2	Yes	11/11/07	39.5
2	PAL0708	3	Adelie Penguin (Pygoscelis adeliae)	Anvers	Torgersen	Adult, 1 Egg Stage	N2A1	Yes	11/16/07	40.3
3	PAL0708	4	Adelie Penguin (Pygoscelis adeliae)	Anvers	Torgersen	Adult, 1 Egg Stage	N2A2	Yes	11/16/07	NaN
4	PAL0708	5	Adelie Penguin (Pygoscelis adeliae)	Anvers	Torgersen	Adult, 1 Egg Stage	N3A1	Yes	11/16/07	36.7
339	PAL0910	120	Gentoo penguin (Pygoscelis papua)	Anvers	Biscoe	Adult, 1 Egg Stage	N38A2	No	12/1/09	NaN
340	PAL0910	121	Gentoo penguin (Pygoscelis papua)	Anvers	Biscoe	Adult, 1 Egg Stage	N39A1	Yes	11/22/09	46.8
341	PAL0910	122	Gentoo penguin (Pygoscelis papua)	Anvers	Biscoe	Adult, 1 Egg Stage	N39A2	Yes	11/22/09	50.4
342	PAL0910	123	Gentoo penguin (Pygoscelis papua)	Anvers	Biscoe	Adult, 1 Egg Stage	N43A1	Yes	11/22/09	45.2
343	PAL0910	124	Gentoo penguin (Pygoscelis papua)	Anvers	Biscoe	Adult, 1 Egg Stage	N43A2	Yes	11/22/09	49.9

344 rows × 17 columns

df = pd.read_csv('penguins_lter.csv')

	l	N I	
$(\ \)$	lumn	INAN	100
し ハ ハ		INCILI	

es	studyName	Sample Number	Species	Region	Island	Stage	Individual ID	Clutch Completion	Date Egg	Culmen Length (mm)
0	PAL0708	1	Adelie Penguin (Pygoscelis adeliae)	Anvers	Torgersen	Adult, 1 Egg Stage	N1A1	Yes	11/11/07	39.1
1	PAL0708	2	Adelie Penguin (Pygoscelis adeliae)	Anvers	Torgersen	Adult, 1 Egg Stage	N1A2	Yes	11/11/07	39.5
2	PAL0708	3	Adelie Penguin (Pygoscelis adeliae)	Anvers	Torgersen	Adult, 1 Egg Stage	N2A1	Yes	11/16/07	40.3
3	PAL0708	4	Adelie Penguin (Pygoscelis adeliae)	Anvers	Torgersen	Adult, 1 Egg Stage	N2A2	Yes	11/16/07	NaN
4	PAL0708	5	Adelie Penguin (Pygoscelis adeliae)	Anvers	Torgersen	Adult, 1 Egg Stage	N3A1	Yes	11/16/07	36.7
•••										
339	PAL0910	120	Gentoo penguin (Pygoscelis papua)	Anvers	Biscoe	Adult, 1 Egg Stage	N38A2	No	12/1/09	NaN
340	PAL0910	121	Gentoo penguin (Pygoscelis papua)	Anvers	Biscoe	Adult, 1 Egg Stage	N39A1	Yes	11/22/09	46.8
341	PAL0910	122	Gentoo penguin (Pygoscelis papua)	Anvers	Biscoe	Adult, 1 Egg Stage	N39A2	Yes	11/22/09	50.4
342	PAL0910	123	Gentoo penguin (Pygoscelis papua)	Anvers	Biscoe	Adult, 1 Egg Stage	N43A1	Yes	11/22/09	45.2
343	PAL0910	124	Gentoo penguin (Pygoscelis papua)	Anvers	Biscoe	Adult, 1 Egg Stage	N43A2	Yes	11/22/09	49.9

344 rows × 17 columns

df = pd.read_csv('penguins_lter.csv')

studyName

Sample

Number

120

121

Column Names

0	PAL0708	1	Adelie Penguin (Pygoscelis adeliae)	Anvers	Torgersen	Adult, 1 Egg Stage	N1A1	Yes 11/11/07	39.1
1	PAL0708	2	Adelie Penguin (Pygoscelis adeliae)	Anvers	Torgersen	Adult, 1 Egg Stage	N1A2	Yes 11/11/07	39.5
2	PAL0708	3	Adelie Penguin (Pygoscelis adeliae)	Anvers	Torgersen	Adult, 1 Egg Stage	N2A1	Yes 11/16/07	40.3
3	PAL0708	4	Adelie Penguin (Pygoscelis adeliae)	Anvers	Torgersen	Adult, 1 Egg Stage	N2A2	Yes 11/16/07	NaN
4	PAL0708	5	Adelie Penguin (Pygoscelis adeliae)	Anvers	Torgersen	Adult, 1 Egg Stage	N3A1	Yes 11/16/07	36.7

Island

Species Region

Gentoo penguin (Pygoscelis

Gentoo penguin (Pygoscelis

Index

341	PAL0910	122	Gentoo penguin (Pygoscelis papua)	Anvers	Biscoe	Adult, 1 Egg Stage	N39A2	Yes 11/22/09	50.4
342	PAL0910	123	Gentoo penguin (Pygoscelis papua)	Anvers	Biscoe	Adult, 1 Egg Stage	N43A1	Yes 11/22/09	45.2
343	PAL0910	124	Gentoo penguin (Pygoscelis papua)	Anvers	Biscoe	Adult, 1 Egg Stage	N43A2	Yes 11/22/09	49.9

Biscoe

Biscoe

Anvers

Anvers

papua)

papua)

344 rows × 17 columns

PAL0910

PAL0910

339

340

No

12/1/09

Yes 11/22/09

Clutch

Completion

Date

Egg

Individual

N38A2

N39A1

Stage

Adult, 1 Egg

Adult, 1 Egg

Stage

Stage

Culmen Length

(mm)

NaN

46.8

df = pd.read_csv('penguins_lter.csv')

Co	lumn	Nan	nes

1E	S	studyName	Sample Number	Species	Region	Island	Stage	Individual ID	Clutch Completion	Date Egg	Culmen Length (mm)
	0	PAL0708	1	Adelie Penguin (Pygoscelis adeliae)	Anvers	Torgersen	Adult, 1 Egg Stage	N1A1	Yes	11/11/07	39.1
	1	PAL0708	2	Adelie Penguin (Pygoscelis adeliae)	Anvers	Torgersen	Adult, 1 Egg Stage	N1A2	Yes	11/11/07	39.5
	2	PAL0708	3	Adelie Penguin (Pygoscelis adeliae)	Anvers	Torgersen	Adult, 1 Egg Stage	N2A1	Yes	11/16/07	40.3
	3	PAL0708	4	Adelie Penguin (Pygoscelis adeliae)	Anvers	Torgersen	Adult, 1 Egg Stage	N2A2	Yes	11/16/07	NaN
	4	PAL0708	5	Adelie Penguin (Pygoscelis adeliae)	Anvers	Torgersen	Adult, 1 Egg Stage	N3A1	Yes	11/16/07	36.7
	339	PAL0910	120	Gentoo penguin (Pygoscelis papua)	Anvers	Biscoe	Adult, 1 Egg Stage	N38A2	No	12/1/09	NaN
	340	PAL0910	121	Gentoo penguin (Pygoscelis papua)	Anvers	Biscoe	Adult, 1 Egg Stage	N39A1	Yes	11/22/09	46.8
	341	PAL0910	122	Gentoo penguin (Pygoscelis papua)	Anvers	Biscoe	Adult, 1 Egg Stage	N39A2	Yes	11/22/09	50.4
	342	PAL0910	123	Gentoo penguin (Pygoscelis	Anvers	Biscoe	Adult, 1 Egg	N43A1	Yes	11/22/09	45.2

Index

344 rows × 17 columns

PAL0910

PAL0910

Column: df['Island']

Biscoe

Biscoe

Anvers

Anvers

papua)

papua)

Gentoo penguin (Pygoscelis

Yes 11/22/09

Yes 11/22/09

N43A1

N43A2

Stage

Stage

Adult, 1 Egg

45.2

49.9

df = pd.read_csv('penguins_lter.csv')

Column Name

Row: df.loc[2]

Index

es	3	studyName	Sample Number	Species	Region	Island	Stage	Individual ID	Clutch Completion	Date Egg	Culmen Length (mm)
Γ	0	PAL0708	1	Adelie Penguin (Pygoscelis adeliae)	Anvers	Torgersen	Adult, 1 Egg Stage	N1A1	Yes	11/11/07	39.1
	1	PAL0708	2	Adelie Penguin (Pygoscelis adeliae)	Anvers	Torgersen	Adult, 1 Egg Stage	N1A2	Yes	11/11/07	39.5
	2	PAL0708	3	Adelie Penguin (Pygoscelis adeliae)	Anvers	Torgersen	Adult, 1 Egg Stage	N2A1	Yes	11/16/07	40.3
	3	PAL0708	4	Adelie Penguin (Pygoscelis adeliae)	Anvers	Torgersen	Adult, 1 Egg Stage	N2A2	Yes	11/16/07	NaN
	4	PAL0708	5	Adelie Penguin (Pygoscelis adeliae)	Anvers	Torgersen	Adult, 1 Egg Stage	N3A1	Yes	11/16/07	36.7
1											
3	39	PAL0910	120	Gentoo penguin (Pygoscelis papua)	Anvers	Biscoe	Adult, 1 Egg Stage	N38A2	No	12/1/09	NaN
3	40	PAL0910	121	Gentoo penguin (Pygoscelis papua)	Anvers	Biscoe	Adult, 1 Egg Stage	N39A1	Yes	11/22/09	46.8
3	41	PAL0910	122	Gentoo penguin (Pygoscelis papua)	Anvers	Biscoe	Adult, 1 Egg Stage	N39A2	Yes	11/22/09	50.4
3	42	PAL0910	123	Gentoo penguin (Pygoscelis papua)	Anvers	Biscoe	Adult, 1 Egg Stage	N43A1	Yes	11/22/09	45.2
3	43	PAL0910	124	Gentoo penguin (Pygoscelis papua)	Anvers	Biscoe	Adult, 1 Egg Stage	N43A2	Yes	11/22/09	49.9

344 rows × 17 columns

Column: df['Island']

	df =	= pd.read_csv('penguins_lter.csv')												
Column Name	es	studyName	Sample Number	Species	Region	Island	Stage	Individual ID	Clutch Completion	Date Egg	Culmen Length (mm)			
·	0	PAL0708	1	Adelie Penguin (Pygoscelis adeliae)	Anvers	Torgersen	Adult, 1 Egg Stage	N1A1	Yes	11/11/07	39.1			
	1	PAL0708	2	Adelie Penguin (Pygoscelis adeliae)	Anvers	Torgersen	Adult, 1 Egg Stage	N1A2	Yes	11/11/07	39.5			
Row: df.loc[2]	2	PAL0708	3	Adelie Penguin (Pygoscelis adeliae)	Anvers	Torgersen	Adult, 1 Egg Stage	N2A1	Yes	11/16/07	40.3			
	3	PAL0708	4	Adelie Penguin (Pygoscelis adeliae)	Anvers	Torgersen	Adult, 1 Egg Stage	N2A2	Yes	11/16/07	NaN			
	4	PAL0708	5	Adelie Penguin (Pygoscelis adeliae)	Anvers	Torgersen	Adult, 1 Egg Stage	N3A1	Yes	11/16/07	36.7			
Index														
	339	PAL0910	120	Gentoo penguin (Pygoscelis papua)	Anvers	Biscoe	Adult, 1 Egg Stage	N38A2	No	12/1/09	NaN			
	340	PAL0910	121	Gentoo penguin (Pygoscelis papua)	Anvers	Biscoe	Adult, 1 Egg Stage	N39A1	Yes	11/22/09	46.8			
Cell: df.loc[34	41,	'Speci	_es']	Gentoo penguin (Pygoscelis papua)	Anvers	Biscoe	Adult, 1 Egg Stage	N39A2	Yes	11/22/09	50.4			
	342	PAL0910	123	Gentoo penguin (Pygoscelis papua)	Anvers	Biscoe	Adult, 1 Egg Stage	N43A1	Yes	11/22/09	45.2			
	343	PAL0910	124	Gentoo penguin (Pygoscelis papua)	Anvers	Biscoe	Adult, 1 Egg Stage	N43A2	Yes	11/22/09	49.9			

Column: df['Island']

344 rows × 17 columns

<pre>df = pd.read_csv('penguins_lter.csv')</pre>											
Column Name	es	SILIOVNAME	Sample Number	Species	Region	Island	Stage	Individual ID	Clutch Completion	Date Egg	Culmen Length (mm)
	0	PAL0708	1	Adelie Penguin (Pygoscelis adeliae)	Anvers	Torgersen	Adult, 1 Egg Stage	N1A1	Yes	11/11/07	39.1
	1	PAL0708	2	Adelie Penguin (Pygoscelis adeliae)	Anvers	Torgersen	Adult, 1 Egg Stage	N1A2	Yes	11/11/07	39.5
Row: df.loc[2]	2	PAL0708	3	Adelie Penguin (Pygoscelis adeliae)	Anvers	Torgersen	Adult, 1 Egg Stage	N2A1	Yes	11/16/07	40.3
	3	PAL0708	4	Adelie Penguin (Pygoscelis adeliae)	Anvers	Torgersen	Adult, 1 Egg Stage	N2A2	Yes	11/16/07	NaN
	4	PAL0708	5	Adelie Penguin (Pygoscelis adeliae)	Anvers	Torgersen	Adult, 1 Egg Stage	N3A1	Yes	11/16/07	Missing Dat
Index											
	339	PAL0910	120	Gentoo penguin (Pygoscelis papua)	Anvers	Biscoe	Adult, 1 Egg Stage	N38A2	No	12/1/09	NaN
	340	PAL0910	121	Gentoo penguin (Pygoscelis papua)	Anvers	Biscoe	Adult, 1 Egg Stage	N39A1	Yes	11/22/09	46.8
Cell: df.loc[34	41,	'Specie	es']	Gentoo penguin (Pygoscelis papua)	Anvers	Biscoe	Adult, 1 Egg Stage	N39A2	Yes	11/22/09	50.4
	342	PAL0910	123	Gentoo penguin (Pygoscelis papua)	Anvers	Biscoe	Adult, 1 Egg Stage	N43A1	Yes	11/22/09	45.2
	343	PAL0910	124	Gentoo penguin (Pygoscelis papua)	Anvers	Biscoe	Adult, 1 Egg Stage	N43A2	Yes	11/22/09	49.9

Column: df['Island']

344 rows × 17 columns

Indexing

- Same as with NumPy arrays but can use Series's index labels
- Slicing with labels: NumPy is exclusive, Pandas is inclusive!

```
- s = Series(np.arange(4))
s[0:2] # gives two values like numpy
- s = Series(np.arange(4), index=['a', 'b', 'c', 'd'])
s['a':'c'] # gives three values, not two!
```

- Obtaining data subsets
 - []: get columns by label
 - loc: get rows/cols by label
 - iloc: get rows/cols by position (integer index)
- For single cells (scalars), also have at and iat

Arithmetic

- Add, subtract, multiply, and divide are element-wise like numpy
- ...but use labels to align
- ...and missing labels lead to NaN (not a number) values

```
In [30]: obj3 + obj4
In [28]: obj3
                     In [29]: obj4
                                               Out[30]:
Out[28]:
                      Out[29]:
                                               California
                      California
Ohio
                                                               NaN
                                     NaN
         35000
                                               Ohio
Oregon
                      Ohio
         16000
                                                             70000
                                   35000
                                               Oregon
                                                              32000
                      Oregon
Texas
                                   16000
      71000
                                               Texas
                                                             142000
Utah
                      Texas
                                   71000
          5000
                                               Utah
                                                                NaN
                      dtype: float64
dtype: int64
                                               dtype: float64
```

- also have .add, .subtract, ... that allow fill_value argument
- obj3.add(obj4, fill_value=0)

Filtering

- Same as with numpy arrays but allows use of column-based criteria
 - data[data < 5] = 0
 - data[data['three'] > 5]
- ◆ data < 5 → boolean data frame, can be used to select specific elements
- Multiple criteria, use &, |, and ~; remember parentheses!

```
- data[(data['three'] > 5) & (data['two'] < 10)]
```

Filtering

df[df['Culmen Length (mm)'] > 40]

	studyName	Sample Number	Species	Region	Island	Stage	Individual ID	Clutch Completion	Date Egg	Culmen Length (mm)
0	PAL0708	1	Adelie Penguin (Pygoscelis adeliae)	Anvers	Torgersen	Adult, 1 Egg Stage	N1A1	Yes	11/11/07	39.1
1	PAL0708	2	Adelie Penguin (Pygoscelis adeliae)	Anvers	Torgersen	Adult, 1 Egg Stage	N1A2	Yes	11/11/07	39.5
2	PAL0708	3	Adelie Penguin (Pygoscelis adeliae)	Anvers	Torgersen	Adult, 1 Egg Stage	N2A1	Yes	11/16/07	40.3
3	PAL0708	4	Adelie Penguin (Pygoscelis adeliae)	Anvers	Torgersen	Adult, 1 Egg Stage	N2A2	Yes	11/16/07	NaN
4	PAL0708	5	Adelie Penguin (Pygoscelis adeliae)	Anvers	Torgersen	Adult, 1 Egg Stage	N3A1	Yes	11/16/07	36.7
•••			•••		•••					•••
339	PAL0910	120	Gentoo penguin (Pygoscelis papua)	Anvers	Biscoe	Adult, 1 Egg Stage	N38A2	No	12/1/09	NaN
340	PAL0910	121	Gentoo penguin (Pygoscelis papua)	Anvers	Biscoe	Adult, 1 Egg Stage	N39A1	Yes	11/22/09	46.8
341	PAL0910	122	Gentoo penguin (Pygoscelis papua)	Anvers	Biscoe	Adult, 1 Egg Stage	N39A2	Yes	11/22/09	50.4
342	PAL0910	123	Gentoo penguin (Pygoscelis papua)	Anvers	Biscoe	Adult, 1 Egg Stage	N43A1	Yes	11/22/09	45.2
343	PAL0910	124	Gentoo penguin (Pygoscelis papua)	Anvers	Biscoe	Adult, 1 Egg Stage	N43A2	Yes	11/22/09	49.9

344 rows × 17 columns

Filtering

df[df['Culmen Length (mm)'] > 40]

	studyName	Sample Number	Species	Region	Island	Stage	Individual ID	Clutch Completion	Date Egg	Culmen Length (mm)
0	PAL0708	1	Adelie Penguin (Pygoscelis adeliae)	Anvers	Torgersen	Adult, 1 Egg Stage	N1A1	Yes	11/11/07	39.1
1	PAL0708	2	Adelie Penguin (Pygoscelis adeliae)	Anvers	Torgersen	Adult, 1 Egg Stage	N1A2	Yes	11/11/07	39.5
2	PAL0708	3	Adelie Penguin (Pygoscelis adeliae)	Anvers	Torgersen	Adult, 1 Egg Stage	N2A1	Yes	11/16/07	40.3
3	PAL0708	4	Adelie Penguin (Pygoscelis adeliae)	Anvers	Torgersen	Adult, 1 Egg Stage	N2A2	Yes	11/16/07	NaN
4	PAL0708	5	Adelie Penguin (Pygoscelis adeliae)	Anvers	Torgersen	Adult, 1 Egg Stage	N3A1	Yes	11/16/07	36.7
•••			•••			•••		•••		•••
339	PAL0910	120	Gentoo penguin (Pygoscelis papua)	Anvers	Biscoe	Adult, 1 Egg Stage	N38A2	No	12/1/09	NaN
340	PAL0910	121	Gentoo penguin (Pygoscelis papua)	Anvers	Biscoe	Adult, 1 Egg Stage	N39A1	Yes	11/22/09	46.8
341	PAL0910	122	Gentoo penguin (Pygoscelis papua)	Anvers	Biscoe	Adult, 1 Egg Stage	N39A2	Yes	11/22/09	50.4
342	PAL0910	123	Gentoo penguin (Pygoscelis papua)	Anvers	Biscoe	Adult, 1 Egg Stage	N43A1	Yes	11/22/09	45.2
343	PAL0910	124	Gentoo penguin (Pygoscelis papua)	Anvers	Biscoe	Adult, 1 Egg Stage	N43A2	Yes	11/22/09	49.9

344 rows × 17 columns

Sorting by Value (sort_values)

- sort values method on series
 - obj.sort values()
- Missing values (NaN) are at the end by default (na_position controls, can be first)
- sort values on DataFrame:
 - df.sort values(<list-of-columns>)
 - df.sort_values(by=['a', 'b'])
 - Can also use axis=1 to sort by index labels

Statistics

- sum: column sums (axis=1 gives sums over rows)
- missing values are excluded unless the whole slice is NaN
- idxmax, idxmin are like argmax, argmin (return index)
- describe: shortcut for easy stats!

```
In [204]: df.describe()
                              In [205]: obj = Series(['a', 'a', 'b', 'c'] * 4)
Out[204]:
                              In [206]: obj.describe()
                      two
            one
                              Out[206]:
       3.000000
count
                2.000000
                                         16
                               count
       3.083333 -2.900000
mean
                               unique
       3.493685 2.262742
std
      0.750000 -4.500000
min
                               top
25%
                               freq
       1.075000 -3.700000
                               dtype: object
50%
       1.400000 -2.900000
75%
       4.250000 -2.100000
       7.100000 -1.300000
max
```

Unique Values and Value Counts

- unique() returns an array with only the unique values (no index)
 - -s = Series(['c', 'a', 'd', 'a', 'a', 'b', 'b', 'c', 'c'])s.unique() # array(['c', 'a', 'd', 'b'])
- Also nunique() to count number of unique entries
- Data Frames use drop duplicates
- value counts returns a Series with index frequencies:

```
- s.value counts() # Series({'c': 3,'a': 3,'b': 2,'d': 1})
```

Reading & Writing Data in Pandas

Format	Data Description	Reader	Writer
text	CSV	read_csv	to_csv
text	Fixed-Width Text File	read_fwf	
text	<u>JSON</u>	read_json	to_json
text	HTML	read_html	to_html
text	Local clipboard	read_clipboard	to_clipboard
	MS Excel	read_excel	to_excel
binary	<u>OpenDocument</u>	read_excel	
binary	HDF5 Format	read_hdf	to_hdf
binary	Feather Format	read_feather	to_feather
binary	Parquet Format	read_parquet	to_parquet
binary	ORC Format	read_orc	
binary	<u>Msgpack</u>	read_msgpack	to_msgpack
binary	<u>Stata</u>	read_stata	to_stata
binary	SAS	read_sas	
binary	<u>SPSS</u>	read_spss	
binary	Python Pickle Format	read_pickle	to_pickle
SQL	SQL	read_sql	to_sql
SQL	Google BigQuery	read_gbq	to_gbq

[https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html]

Reading CSV data with pandas

- Convenient method to read csv files
- Lots of different options to help get data into the desired format
- Basic: df = pd.read csv(fname)
- Parameters:
 - path: where to read the data from
 - sep (or delimiter): the delimiter (',', ', '\t', '\s+')
 - header: if None, no header
 - index col: which column to use as the row index
 - names: list of header names (e.g. if the file has no header)
 - skiprows: number of list of lines to skip

Writing CSV data with pandas

- Basic: df.to_csv(<fname>)
- Change delimiter with sep kwarg:

```
- df.to_csv('example.dsv', sep='|')
```

Change missing value representation

```
- df.to_csv('example.dsv', na_rep='NULL')
```

Don't write row or column labels:

```
- df.to csv('example.csv', index=False, header=False)
```

Series may also be written to csv

Handling Missing Data

Argument	Description
dropna	Filter axis labels based on whether values for each label have missing data, with varying thresholds for how much missing data to tolerate.
fillna	Fill in missing data with some value or using an interpolation method such as 'ffill' or 'bfill'.
isnull	Return like-type object containing boolean values indicating which values are missing / NA.
notnull	Negation of isnull.

[W. McKinney, Python for Data Analysis]

Derived Data

- Create new columns from existing columns
 - r["PctFail"] = r['Fail'] / r['Total']
- Note that operations are computed in a vectorized manner
- Similarities to functional paradigm (map/filter):
 - specify the operation once
 - no loops
 - interpreted as an operation on the entire column

inplace

- Generally, when we modify a data frame, we reassign:
 - rdf = df.reset index()
 - This is usually very efficient
 - Allows for method chaining
- There are versions where you can do this "inplace":
 - df.reset_index(inplace=True)
 - This means no reassignment, but it isn't usually any faster nor better
 - Sometimes still creates a copy
 - Will likely be deprecated

Documentation

- pandas <u>documentation</u> is pretty good
- Lots of recipes on stackoverflow for particular data manipulations/queries

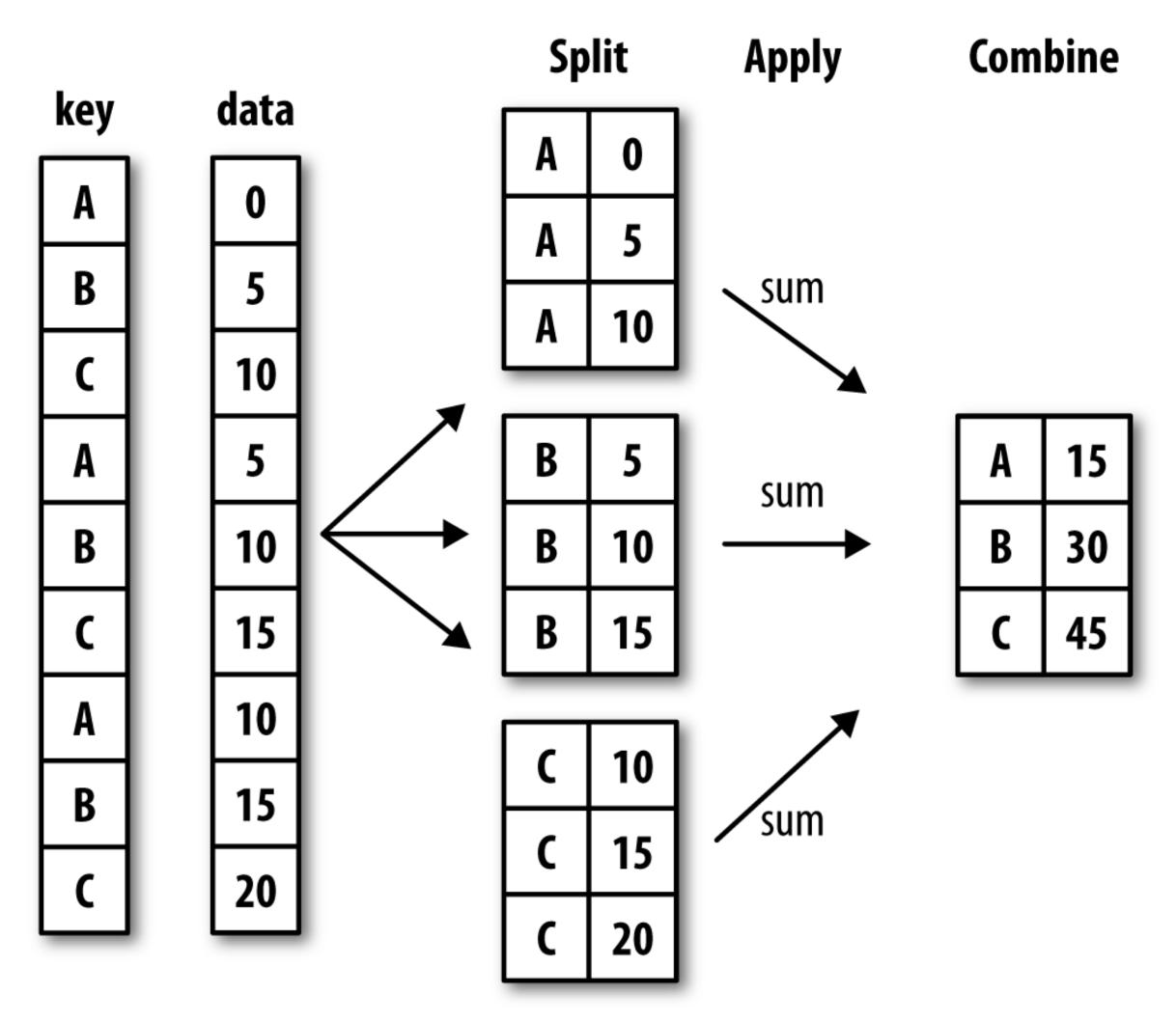
Teaching Evaluations

• This Thursday (Nov. 18) in class

Assignment 7

- Downloading and unarchiving files
 - CSCI 503: Use aiohttp, CSCI 490: use requests
- File system manipulation
- Threading
- Basic Data Manipulation
- Due Monday

Aggregation


Descriptive statistics

```
- df['Culmen Length (mm)'].mean()
- .median()
- .describe()
- .count()
- .min(), .max()
```

Also general methods

```
- .sum()- .product()
```

Split-Apply-Combine

[W. McKinney, Python for Data Analysis]

Split-Apply-Combine

- Similar to Map (split+apply) Reduce (combine) paradigm
- The Pattern:
 - 1. Split the data by some grouping variable
 - 2. Apply some function to each group independently
 - 3. Combine the data into some output dataset
- The apply step is usually one of:
 - Aggregate
 - Transform
 - Filter

[T. Brandt]

In Pandas

- groupby method creates a Groupby object
- groupby doesn't actually compute anything until there is an apply/aggregate step or we wish to examine the groups
- Choose keys (columns) to group by
- size() is the count of each group
- Other aggregates also work

Examples

df.groupby('Island')df.groupby('Island').size()df.groupby('Island')['Culmen Length (mm)'].mean()

Split-Apply-Combine

```
• df.groupby('Island')[['Culmen Length (mm)',
                           'Culmen Depth (mm)']].mean()
• df.groupby('Island').agg({'Culmen Length (mm)': 'mean',
                               'Culmen Depth (mm) ': 'mean' })
• df.groupby('Island').agg(
      cul length=('Culmen Length (mm)', 'mean'),
      cul depth=('Culmen Depth (mm)', 'mean'))
                               cul_length cul_depth
                          Island
                         Biscoe 45.257485 15.874850
                         Dream 44.167742 18.344355
                                        18.429412
                               38.950980
                       Torgersen
```

Different Data Layouts

	treatmenta	treatmentb
John Smith		2
Jane Doe	16	11
Mary Johnson	3	1

Initial Data

	John Smith	Jane Doe	Mary Johnson
treatmenta		16	3
treatmentb	2	11	1

Transpose

name	trt	result
John Smith	a	
Jane Doe	\mathbf{a}	16
Mary Johnson	a	3
John Smith	b	2
Jane Doe	b	11
Mary Johnson	b	1

Tidy Data

[H. Wickham, 2014]

Problem: Variables stored in both rows & columns

id	year	month	element	d1	d2	d3	d4	d5	d6	d7	d8
MX17004	2010	1	tmax								
MX17004	2010	1	tmin								
MX17004	2010	2	tmax		27.3	24.1					
MX17004	2010	2	tmin		14.4	14.4					
MX17004	2010	3	tmax					32.1			
MX17004	2010	3	tmin					14.2			
MX17004	2010	4	tmax								
MX17004	2010	4	tmin								
MX17004	2010	5	tmax								
MX17004	2010	5	tmin								

[H. Wickham, 2014]

Problem: Variables stored in both rows & columns

Mexico Weather, Global Historical Climatology Network

id	year	month	element	d1	d2	d3	d4	d5	d6	d7	d8
MX17004	2010	1	tmax								
MX17004	2010	1	tmin								
MX17004	2010	2	tmax		27.3	24.1					
MX17004	2010	2	tmin		14.4	14.4					
MX17004	2010	3	tmax					32.1			
MX17004	2010	3	tmin					14.2			
MX17004	2010	4	tmax								
MX17004	2010	4	tmin								
MX17004	2010	5	tmax								
MX17004	2010	5	tmin								

Variable in columns: day; Variable in rows: tmax/tmin

[H. Wickham, 2014]

Solution: Melting + Pivot

id	date	element	value	id	date	tmax	tmin
MX17004	2010-01-30	tmax	27.8	MX17004	2010-01-30	27.8	14.5
MX17004	2010-01-30	tmin	14.5	MX17004	2010-02-02	27.3	14.4
MX17004	2010-02-02	tmax	27.3	MX17004	2010-02-03	24.1	14.4
MX17004	2010-02-02	tmin	14.4	MX17004	2010 - 02 - 11	29.7	13.4
MX17004	2010-02-03	tmax	24.1	MX17004	2010-02-23	29.9	10.7
MX17004	2010-02-03	tmin	14.4	MX17004	2010-03-05	32.1	14.2
MX17004	2010 - 02 - 11	tmax	29.7	MX17004	2010-03-10	34.5	16.8
MX17004	2010 - 02 - 11	tmin	13.4	MX17004	2010-03-16	31.1	17.6
MX17004	2010 - 02 - 23	tmax	29.9	MX17004	2010 - 04 - 27	36.3	16.7
MX17004	2010-02-23	tmin	10.7	MX17004	2010-05-27	33.2	18.2

(a) Molten data

(b) Tidy data

[H. Wickham, 2014]

Melt

Want to keep each observation separate (tidy), aka pivot_longer

	location	Temperature	Jan-2010	Feb-2010	Mar-2010
0	CityA	Predict	30	45	24
1	CityB	Actual	32	43	22

	location	Temperature	Date	Value
0	CityA	Predict	Jan-2010	30
1	CityB	Actual	Jan-2010	32
2	CityA	Predict	Feb-2010	45
3	CityB	Actual	Feb-2010	43
4	CityA	Predict	Mar-2010	24
5	CityB	Actual	Mar-2010	22

[AB Abhi]

Pivot

- Sometimes, we have data that is given in "long" format and we would like "wide" format (aka pivot_wider)
- Long format: column names are data values...
- Wide format: more like spreadsheet format
- Example:

date	item	value	<pre>.pivot('date', 'item', 'value')</pre>
0 1959-03-31	realgdp	2710.349	
1 1959-03-31	infl	0.000	item infl realgdp unemp
2 1959-03-31	unemp	5.800	date
3 1959-06-30	realgdp	2778.801	1959-03-31 0.00 2710.349 5.8
4 1959-06-30	infl	2.340	1959-06-30 2.34 2778.801 5.1
5 1959-06-30	unemp	5.100	1959-09-30 2.74 2775.488 5.3
6 1959-09-30	realgdp	2775.488	1959-12-31 0.27 2785.204 5.6
7 1959-09-30	infl	2.740	1960-03-31 2.31 2847.699 5.2
8 1959-09-30	unemp	5.300	
9 1959-12-31	realgdp	2785.204	

[W. McKinney, Python for Data Analysis]

Reshaping Data

- Reshape/pivoting are fundamental operations
- Can have a nested index in pandas
- Example: Congressional Districts (Ohio's 1st, 2nd, 3rd, Colorado's 1st, 2nd, 3rd) and associated representative rankings
- Could write this in different ways:

number state	one	two	three	state number	Ohio	Colorac
Ohio	0	1	2	one	0	
_		_	Z 	two	1	
Colorado	3	4	5	three	2	

state	number	
Ohio	one	0
	two	1
	three	2
Colorado	one	3
	two	4
	three	5

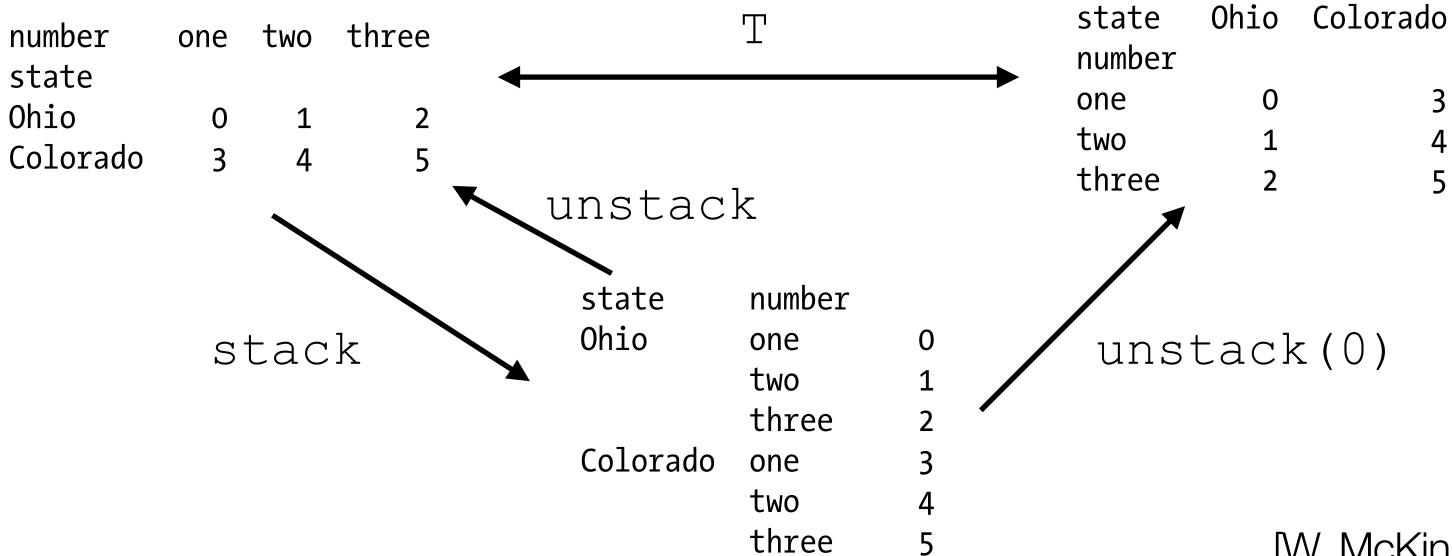
Reshaping Data

- Reshape/pivoting are fundamental operations
- Can have a nested index in pandas
- Example: Congressional Districts (Ohio's 1st, 2nd, 3rd, Colorado's 1st, 2nd, 3rd) and associated representative rankings
- Could write this in different ways:

number	one	two	three
state			
Ohio	0	1	2
Colorado	3	4	5

state	Ohio	Colorad
number		
one	0	
two	1	
three	2	

MultiIndex


```
state number
Ohio one
two
three
Colorado one
two
three
```

Stack and Unstack

- stack: pivots from the columns into rows (may produce a Series!)
- unstack: pivots from rows into columns
- unstacking may add missing data
- stacking filters out missing data (unless dropna=False)

• can unstack at a different level by passing it (e.g. 0), defaults to innermost

level

String Methods

- Can do many of the same methods used for single strings on entire columns
- Requires .str prefix before calling the method

```
- violations.value.str.strip().str.split(' - Comments:')
```

- Also helps when extracting from a list
 - comments.str[1]

String Methods

Argument	Description	
count	Return the number of non-overlapping occurrences of substring in the string.	
endswith	Returns True if string ends with suffix.	
startswith	Returns True if string starts with prefix.	
join	Use string as delimiter for concatenating a sequence of other strings.	
index	Return position of first character in substring if found in the string; raises ValueError if not found	d.
find	Return position of first character of <i>first</i> occurrence of substring in the string; like $index$, but return if not found.	ns –1
rfind	Return position of first character of <i>last</i> occurrence of substring in the string; returns —1 if not found.	
replace	Replace occurrences of string with another string.	
strip, rstrip, lstrip	Trim whitespace, including newlines; equivalent to x.strip() (and rstrip, lstrip, respector for each element.	ctively)
split	Break string into list of substrings using passed delimiter.	
lower	Convert alphabet characters to lowercase.	
иррег	Convert alphabet characters to uppercase.	
casefold	Convert characters to lowercase, and convert any region-specific variable character combinations to a common comparable form.	a
ljust,	Left justify or right justify, respectively; pad opposite side of string with spaces (or some other fill	
rjust	character) to return a string with a minimum width. [W. McKin	nney,

Support for Datetime

- Python has datetime library to support dates and times
- pandas has a Timestamp data type that functions somewhat similarly
- Pandas can convert timestamps
 - pd.to datetime: versatile, can often guess format
- Like string methods, also a .dt accessor for datetime methods/properties
- With a timestamp, filtering based on datetimes becomes easier
 - df[df['Inspection Date'] > '2021']

Method chaining in pandas

- Tom Augspurger's <u>post</u>
- Towards Data Science post by Adiamann Keerthi
- Functions written for chaining, and pipe allows custom functions

Example: Inspect Intermediate Results

```
• def csnap(df, fn=lambda x: x.shape, msg=None):
     """ Custom Help function to print things in method chaining.
         Returns back the df to further use in chaining.
     ** ** **
     if msg:
         print (msg)
     display(fn(df))
     return df
• wine.pipe(csnap) # display data frame
      .rename(columns={"color intensity": "ci"})
      .assign(color filter=lambda x: np.where(x.hue > 1, 1, 0))
      .pipe(csnap) # display data frame
```