
Programming Principles in Python (CSCI 503)

Data

Dr. David Koop

D. Koop, CSCI 503/490, Fall 2021

CPU-Bound vs. I/O-Bound

2

[J. Anderson]
D. Koop, CSCI 503/490, Fall 2021

https://realpython.com/python-concurrency
https://realpython.com/python-concurrency

Threading
• Threading address the I/O waits by

letting separate pieces of a program
run at the same time

• Threads run in the same process
• Threads share the same memory

(and global variables)
• Operating system schedules threads;

it can manage when each thread
runs, e.g. round-robin scheduling

• When blocking for I/O, other threads
can run

3

[J. Anderson]
D. Koop, CSCI 503/490, Fall 2021

https://realpython.com/python-concurrency
https://realpython.com/python-concurrency

Python Threading Speed
• If I/O bound, threads work great because time spent waiting can now be

used by other threads
• Threads do not run simultaneously in standard Python, i.e. they cannot take

advantage of multiple cores
• Use threads when code is I/O bound, otherwise no real speed-up plus some

overhead for using threads

4D. Koop, CSCI 503/490, Fall 2021

Python and the GIL
• Solution for reference counting (used for garbage collection)
• Could add locking to every value/data structure, but with multiple locks

comes possible deadlock
• Python instead has a Global Interpreter Lock (GIL) that must be acquired to

execute any Python code
• This effectively makes Python single-threaded (faster execution)
• Python requires threads to give up GIL after certain amount of time
• Python 3 improved allocation of GIL to threads by not allowing a single CPU-

bound thread to hog it

5D. Koop, CSCI 503/490, Fall 2021

Multiprocessing
• Multiple processes do not need to share the same memory, interact less
• Python makes the difference between processes and threads minimal in

most cases
• Big win: can take advantage of multiple cores!

6D. Koop, CSCI 503/490, Fall 2021

Multiprocessing using concurrent.futures
• import concurrent.futures
import multiprocessing as mp
import time

def dummy(num):
 time.sleep(5)
 return num ** 2

with concurrent.futures.ProcessPoolExecutor(max_workers=5,
 mp_context=mp.get_context('fork')) as executor:
 results = executor.map(dummy, range(10))

• mp.get_context('fork') changes from 'spawn' used by default in
MacOS, works in notebook

7D. Koop, CSCI 503/490, Fall 2021

asyncio
• Single event loop that controls when each task is run
• Tasks can be ready or waiting
• Tasks are not interrupted like they are with threading
- Task controls when control goes back to the main event loop
- Either waiting or complete

• Event loop keeps track of whether tasks are ready or waiting
- Re-checks to see if new tasks are now ready
- Picks the task that has been waiting the longest

• async and await keywords
• Requires support from libraries (e.g. aiohttp)

8

[J. Anderson]
D. Koop, CSCI 503/490, Fall 2021

https://realpython.com/python-concurrency
https://realpython.com/python-concurrency

When to use threading, asyncio, or multiprocessing?
• If your code has a lot of I/O or Network usage:
- If there is library support, use asyncio
- Otherwise, multithreading is your best bet (lower overhead)

• If you have a GUI
- Multithreading so your UI thread doesn't get locked up

• If your code is CPU bound:
- You should use multiprocessing (if your machine has multiple cores)

9

[J. Anderson]
D. Koop, CSCI 503/490, Fall 2021

https://realpython.com/python-concurrency
https://realpython.com/python-concurrency

Concurrency Comparison

10

[J. Anderson]
D. Koop, CSCI 503/490, Fall 2021

Concurrency Type Switching Decision
Number of

Processors
Pre-emptive
multitasking
(threading)

The operating system decides when
to switch tasks external to Python.

1

Cooperative
multitasking
(asyncio)

The tasks decide when to give up
control.

1

Multiprocessing
(multiprocessing)

The processes all run at the same
time on different processors.

Many

https://realpython.com/python-concurrency
https://realpython.com/python-concurrency

pandas
• Contains high-level data structures and manipulation tools designed to make

data analysis fast and easy in Python
• Built on top of NumPy
• Built with the following requirements:
- Data structures with labeled axes (aligning data)
- Support time series data
- Do arithmetic operations that include metadata (labels)
- Handle missing data
- Add merge and relational operations

11D. Koop, CSCI 503/490, Fall 2021

Pandas Code Conventions
• Universal:

- import pandas as pd

• Also used:
- from pandas import Series, DataFrame

12D. Koop, CSCI 503/490, Fall 2021

Series
• A one-dimensional array (with a type) with an index
• Index defaults to numbers but can also be text (like a dictionary)
• Allows easier reference to specific items
• obj = pd.Series([7,14,-2,1])

• Basically two arrays: obj.values and obj.index
• Can specify the index explicitly and use strings
• obj2 = pd.Series([4, 7, -5, 3],
 index=['d', 'b', 'a', 'c'])

• Kind of like fixed-length, ordered dictionary + can create from a dictionary
• obj3 = pd.Series({'Ohio': 35000, 'Texas': 71000,
 'Oregon': 16000, 'Utah': 5000})

13D. Koop, CSCI 503/490, Fall 2021

Series
• Indexing: s[1] or s['Oregon']
• Can check for missing data: pd.isnull(s) or pd.notnull(s)
• Both index and values can have an associated name:

- s.name = 'population'; s.index.name = 'state'

• Addition and NumPy ops work as expected and preserve the index-value link
• Arithmetic operations align:

14

[W. McKinney, Python for Data Analysis]
D. Koop, CSCI 503/490, Fall 2021

When only passing a dict, the index in the resulting Series will have the dict’s keys in
sorted order.

In [22]: states = ['California', 'Ohio', 'Oregon', 'Texas']

In [23]: obj4 = Series(sdata, index=states)

In [24]: obj4
Out[24]:
California NaN
Ohio 35000
Oregon 16000
Texas 71000
dtype: float64

In this case, 3 values found in sdata were placed in the appropriate locations, but since
no value for 'California' was found, it appears as NaN (not a number) which is con-
sidered in pandas to mark missing or NA values. I will use the terms “missing” or “NA”
to refer to missing data. The isnull and notnull functions in pandas should be used to
detect missing data:

In [25]: pd.isnull(obj4) In [26]: pd.notnull(obj4)
Out[25]: Out[26]:
California True California False
Ohio False Ohio True
Oregon False Oregon True
Texas False Texas True
dtype: bool dtype: bool

Series also has these as instance methods:

In [27]: obj4.isnull()
Out[27]:
California True
Ohio False
Oregon False
Texas False
dtype: bool

I discuss working with missing data in more detail later in this chapter.

A critical Series feature for many applications is that it automatically aligns differently-
indexed data in arithmetic operations:

In [28]: obj3 In [29]: obj4
Out[28]: Out[29]:
Ohio 35000 California NaN
Oregon 16000 Ohio 35000
Texas 71000 Oregon 16000
Utah 5000 Texas 71000
dtype: int64 dtype: float64

In [30]: obj3 + obj4
Out[30]:
California NaN
Ohio 70000

110 | Chapter 5: Getting Started with pandas

When only passing a dict, the index in the resulting Series will have the dict’s keys in
sorted order.

In [22]: states = ['California', 'Ohio', 'Oregon', 'Texas']

In [23]: obj4 = Series(sdata, index=states)

In [24]: obj4
Out[24]:
California NaN
Ohio 35000
Oregon 16000
Texas 71000
dtype: float64

In this case, 3 values found in sdata were placed in the appropriate locations, but since
no value for 'California' was found, it appears as NaN (not a number) which is con-
sidered in pandas to mark missing or NA values. I will use the terms “missing” or “NA”
to refer to missing data. The isnull and notnull functions in pandas should be used to
detect missing data:

In [25]: pd.isnull(obj4) In [26]: pd.notnull(obj4)
Out[25]: Out[26]:
California True California False
Ohio False Ohio True
Oregon False Oregon True
Texas False Texas True
dtype: bool dtype: bool

Series also has these as instance methods:

In [27]: obj4.isnull()
Out[27]:
California True
Ohio False
Oregon False
Texas False
dtype: bool

I discuss working with missing data in more detail later in this chapter.

A critical Series feature for many applications is that it automatically aligns differently-
indexed data in arithmetic operations:

In [28]: obj3 In [29]: obj4
Out[28]: Out[29]:
Ohio 35000 California NaN
Oregon 16000 Ohio 35000
Texas 71000 Oregon 16000
Utah 5000 Texas 71000
dtype: int64 dtype: float64

In [30]: obj3 + obj4
Out[30]:
California NaN
Ohio 70000

110 | Chapter 5: Getting Started with pandas

Oregon 32000
Texas 142000
Utah NaN
dtype: float64

Data alignment features are addressed as a separate topic.

Both the Series object itself and its index have a name attribute, which integrates with
other key areas of pandas functionality:

In [31]: obj4.name = 'population'

In [32]: obj4.index.name = 'state'

In [33]: obj4
Out[33]:
state
California NaN
Ohio 35000
Oregon 16000
Texas 71000
Name: population, dtype: float64

A Series’s index can be altered in place by assignment:

In [34]: obj.index = ['Bob', 'Steve', 'Jeff', 'Ryan']

In [35]: obj
Out[35]:
Bob 4
Steve 7
Jeff -5
Ryan 3
dtype: int64

DataFrame
A DataFrame represents a tabular, spreadsheet-like data structure containing an or-
dered collection of columns, each of which can be a different value type (numeric,
string, boolean, etc.). The DataFrame has both a row and column index; it can be
thought of as a dict of Series (one for all sharing the same index). Compared with other
such DataFrame-like structures you may have used before (like R’s data.frame), row-
oriented and column-oriented operations in DataFrame are treated roughly symmet-
rically. Under the hood, the data is stored as one or more two-dimensional blocks rather
than a list, dict, or some other collection of one-dimensional arrays. The exact details
of DataFrame’s internals are far outside the scope of this book.

While DataFrame stores the data internally in a two-dimensional for-
mat, you can easily represent much higher-dimensional data in a tabular
format using hierarchical indexing, a subject of a later section and a key
ingredient in many of the more advanced data-handling features in pan-
das.

Introduction to pandas Data Structures | 111

Data Frame
• A dictionary of Series (labels for each series)
• A spreadsheet with row keys (the index) and column headers
• Has an index shared with each series
• Allows easy reference to any cell
• df = DataFrame({'state': ['Ohio', 'Ohio', 'Ohio', 'Nevada'],
 'year': [2000, 2001, 2002, 2001],
 'pop': [1.5, 1.7, 3.6, 2.4]})

• Index is automatically assigned just as with a series but can be passed in as
well via index kwarg

• Can reassign column names by passing columns kwarg

15D. Koop, CSCI 503/490, Fall 2021

Table 5-1. Possible data inputs to DataFrame constructor

Type Notes

2D ndarray A matrix of data, passing optional row and column labels

dict of arrays, lists, or tuples Each sequence becomes a column in the DataFrame. All sequences must be the same length.

NumPy structured/record array Treated as the “dict of arrays” case

dict of Series Each value becomes a column. Indexes from each Series are unioned together to form the
result’s row index if no explicit index is passed.

dict of dicts Each inner dict becomes a column. Keys are unioned to form the row index as in the “dict of
Series” case.

list of dicts or Series Each item becomes a row in the DataFrame. Union of dict keys or Series indexes become the
DataFrame’s column labels

List of lists or tuples Treated as the “2D ndarray” case

Another DataFrame The DataFrame’s indexes are used unless different ones are passed

NumPy MaskedArray Like the “2D ndarray” case except masked values become NA/missing in the DataFrame result

Index Objects
pandas’s Index objects are responsible for holding the axis labels and other metadata
(like the axis name or names). Any array or other sequence of labels used when con-
structing a Series or DataFrame is internally converted to an Index:

In [67]: obj = Series(range(3), index=['a', 'b', 'c'])

In [68]: index = obj.index

In [69]: index
Out[69]: Index([u'a', u'b', u'c'], dtype='object')

In [70]: index[1:]
Out[70]: Index([u'b', u'c'], dtype='object')

Index objects are immutable and thus can’t be modified by the user:

In [71]: index[1] = 'd'

TypeError Traceback (most recent call last)
<ipython-input-71-676fdeb26a68> in <module>()
----> 1 index[1] = 'd'
/home/phillip/miniconda3/envs/conda2/lib/python2.7/site-packages/pandas/core/
base.pyc in _disabled(self, *args, **kwargs)
 177 """This method will not function because object is immutable."""
 178 raise TypeError("'%s' does not support mutable operations." %
--> 179 self.__class__)
 180
 181 __setitem__ = __setslice__ = __delitem__ = __delslice__ = _disabled
TypeError: '<class 'pandas.core.index.Index'>' does not support mutable operations.

116 | Chapter 5: Getting Started with pandas

DataFrame Constructor Inputs

16

[W. McKinney, Python for Data Analysis]
D. Koop, CSCI 503/490, Fall 2021

DataFrame Access and Manipulation
• df.values → 2D NumPy array

• Accessing a column:
- df["<column>"]

- df.<column>

- Both return Series
- Dot syntax only works when the column is a valid identifier

• Assigning to a column:
- df["<column>"] = <scalar> # all cells set to same value

- df["<column>"] = <array> # values set in order

- df["<column>"] = <series> # values set according to match
 # between df and series indexes

17D. Koop, CSCI 503/490, Fall 2021

Data Frame

18D. Koop, CSCI 503/490, Fall 2021

Data Frame

18D. Koop, CSCI 503/490, Fall 2021

Column Names

Data Frame

18D. Koop, CSCI 503/490, Fall 2021

Column Names

Index

Data Frame

18D. Koop, CSCI 503/490, Fall 2021

Column Names

Index

Column: df['Island']

Data Frame

18D. Koop, CSCI 503/490, Fall 2021

Column Names

Index

Column: df['Island']

Row: df.loc[2]

Data Frame

18D. Koop, CSCI 503/490, Fall 2021

Column Names

Index

Column: df['Island']

Cell: df.loc[341,'Species']

Row: df.loc[2]

Data Frame

18D. Koop, CSCI 503/490, Fall 2021

Column Names

Index

Column: df['Island']

Cell: df.loc[341,'Species']

Missing Data

Row: df.loc[2]

DataFrame Index
• Similar to index for Series
• Immutable
• Can be shared with multiple structures (DataFrames or Series)
• in operator works with: 'Ohio' in df.index
• Can choose new index column(s) with set_index()
• reindex creates a new object with the data conformed to new index

- obj2 = obj.reindex(['a', 'b', 'c', 'd', 'e'])

- can fill in missing values in different ways

19D. Koop, CSCI 503/490, Fall 2021

Reading & Writing Data in Pandas

20

[https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html]
D. Koop, CSCI 503/490, Fall 2021

Format
Type

Data Description Reader Writer
text CSV read_csv to_csv
text Fixed-Width Text File read_fwf
text JSON read_json to_json
text HTML read_html to_html
text Local clipboard read_clipboard to_clipboard

MS Excel read_excel to_excel
binary OpenDocument read_excel
binary HDF5 Format read_hdf to_hdf
binary Feather Format read_feather to_feather
binary Parquet Format read_parquet to_parquet
binary ORC Format read_orc
binary Msgpack read_msgpack to_msgpack
binary Stata read_stata to_stata
binary SAS read_sas
binary SPSS read_spss
binary Python Pickle Format read_pickle to_pickle
SQL SQL read_sql to_sql
SQL Google BigQuery read_gbq to_gbq

https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html
https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html
https://en.wikipedia.org/wiki/Comma-separated_values
https://www.json.org/
https://en.wikipedia.org/wiki/HTML
https://en.wikipedia.org/wiki/Microsoft_Excel
http://www.opendocumentformat.org/
https://support.hdfgroup.org/HDF5/whatishdf5.html
https://github.com/wesm/feather
https://parquet.apache.org/
https://https//orc.apache.org/
https://msgpack.org/index.html
https://en.wikipedia.org/wiki/Stata
https://en.wikipedia.org/wiki/SAS_(software)
https://en.wikipedia.org/wiki/SPSS
https://docs.python.org/3/library/pickle.html
https://en.wikipedia.org/wiki/SQL
https://en.wikipedia.org/wiki/BigQuery

read_csv
• Convenient method to read csv files
• Lots of different options to help get data into the desired format
• Basic: df = pd.read_csv(fname)
• Parameters:

- path: where to read the data from
- sep (or delimiter): the delimiter (',', ' ', '\t', '\s+')
- header: if None, no header
- index_col: which column to use as the row index
- names: list of header names (e.g. if the file has no header)
- skiprows: number of list of lines to skip

21D. Koop, CSCI 503/490, Fall 2021

Writing CSV data with pandas
• Basic: df.to_csv(<fname>)
• Change delimiter with sep kwarg:

- df.to_csv('example.dsv', sep='|')

• Change missing value representation
- df.to_csv('example.dsv', na_rep='NULL')

• Don't write row or column labels:
- df.to_csv('example.csv', index=False, header=False)

• Series may also be written to csv

22D. Koop, CSCI 503/490, Fall 2021

Documentation
• pandas documentation is pretty good
• Lots of recipes on stackoverflow for particular data manipulations/queries

23D. Koop, CSCI 503/490, Fall 2021

https://pandas.pydata.org/docs/
https://pandas.pydata.org/docs/

Food Inspections Example

24D. Koop, CSCI 503/490, Fall 2021

