
Programming Principles in Python (CSCI 503/490)

Debugging & Testing

Dr. David Koop

D. Koop, CSCI 503/490, Fall 2021

Dealing with Errors
• Can explicitly check for errors at each step
- Check for division by zero
- Check for invalid parameter value (e.g. string instead of int)

• Sometimes all of this gets in the way and can't be addressed succinctly
- Too many potential errors to check
- Cannot handle groups of the same type of errors together

• Allow programmer to determine when and how to handle issues
- Allow things to go wrong and handle them instead
- Allow errors to be propagated and addressed once

2D. Koop, CSCI 503/490, Fall 2021

Advantages of Exceptions
• Separate error-handling code from "regular" code
• Allows propagation of errors up the call stack
• Errors can be grouped and differentiated

3

[Java Tutorial, Oracle]
D. Koop, CSCI 503/490, Fall 2021

https://docs.oracle.com/javase/tutorial/essential/exceptions/advantages.html
https://docs.oracle.com/javase/tutorial/essential/exceptions/advantages.html

Try-Except
• The try statement has the following form:
try:
 <body>
except <ErrorType>*:
 <handler>

• When Python encounters a try statement, it attempts to execute the
statements inside the body.

• If there is no error, control passes to the next statement after the try…
except (unless else or finally clauses)

• Note: except not catch

4D. Koop, CSCI 503/490, Fall 2021

Exception Granularity
• If you catch any exception using a base class near the top of the hierarchy,

you may be masking code errors
• try:
 c, d = a / b
except Exception:
 c, d = 0, 0

• Remember Exception catches any exception is an instance of Exception
• Catches TypeError: cannot unpack non-iterable float object
• Better to have more granular (specific) exceptions!
• We don't want to catch the TypeError because this is a programming error

not a runtime error

5D. Koop, CSCI 503/490, Fall 2021

Exception Locality
• try:
 fname = 'missing-file.dat'
 with open(fname) as f:
 lines = f.readlines()
except OSError:
 print(f"An error occurred reading {fname}")
try:
 out_fname = 'output-file.dat'
 with open('output-file.dat', 'w') as fout:
 fout.write("Testing")
except OSError:
 print(f"An error occurred writing {out_fname}")

6D. Koop, CSCI 503/490, Fall 2021

Multiple Except Clauses
• Function like an if/elif sequence
• Checked in order so put more granular exceptions earlier!
• try:
 fname = 'missing-file.dat'
 with open(fname) as f:
 lines = f.readlines()
 out_fname = 'output-file.dat'
 with open('output-file.dat', 'w') as fout:
 fout.write("Testing")
except FileNotFoundError:
 print(f"File {fname} does not exist")
except OSError:
 print("An error occurred processing files")

7D. Koop, CSCI 503/490, Fall 2021

Handling Multiple Exceptions at Once
• Can process multiple exceptions with one clause, use tuple of classes
• Allows some specificity but without repeating
• try:
 fname = 'missing-file.dat'
 with open(fname) as f:
 lines = f.readlines()
 out_fname = 'output-file.dat'
 with open('output-file.dat', 'w') as fout:
 fout.write("Testing")
except (FileNotFoundError, PermissionError):
 print("An error occurred processing files")

8D. Koop, CSCI 503/490, Fall 2021

Exception Objects
• Exceptions themselves are a type of object.
• If you follow the error type with an identifier in an except clause, Python will

assign that identifier the actual exception object.
• Sometimes exceptions encode information that is useful for handling
• try:
 fname = 'missing-file.dat'
 with open(fname) as f:
 lines = f.readlines()
 out_fname = 'output-file.dat'
 with open('output-file.dat', 'w') as fout:
 fout.write("Testing")
except OSError as e:
 print(e.errno, e.filename, e)

9D. Koop, CSCI 503/490, Fall 2021

Else & Finally
• else: Code that executes if no exception occurs
• finally: Code that always runs, regardless of whether there is an exception
• b = 3
a = 0
try:
 c = b / a
except ZeroDivisionError:
 print("Division failed")
 c = 0
else:
 print("Division succeeded", c)
finally:
 print("This always runs")

10D. Koop, CSCI 503/490, Fall 2021

Raising Exceptions
• Create an exception and raise it using the raise keyword
• Pass a string that provides some detail
• Example: raise Exception("This did not work correctly")
• Try to find a exception class:

- ValueError: if an argument doesn't fit the functions expectations
- NotImplementedError: if a method isn't implemented (e.g. abstract cls)

• Be specific in the error message, state actual values
• Can also subclass from existing exception class, but check if existing

exception works first
• Some packages create their own base exception class (RequestException)

11D. Koop, CSCI 503/490, Fall 2021

Making Sense of Exceptions
• When code (e.g. a cell) crashes, read the traceback:
• ZeroDivisionError Traceback (most recent call last)
<ipython-input-58-488e97ad7d74> in <module>
 4 return divide(a+b, a-b)
 5 for i in range(4):
----> 6 process(3, i)
<ipython-input-58-488e97ad7d74> in process(a, b)
 3 return c / d
----> 4 return divide(a+b, a-b)
 5 for i in range(4):
<ipython-input-58-488e97ad7d74> in divide(c, d)
 2 def divide(c, d):
----> 3 return c / d
 4 return divide(a+b, a-b)
ZeroDivisionError: division by zero

12D. Koop, CSCI 503/490, Fall 2021

Assignment 6
• Object-oriented Programming
• Track University Enrollment
• Methods for checking conflicts (e.g. disallow student to have overlapping

courses, take too many credits)
• [503] Methods for changing course time (check the new time works for

everyone)
• Sample code is meant to be run in different cells!
• Due Tuesday, Nov. 2

13D. Koop, CSCI 503/490, Fall 2021

http://faculty.cs.niu.edu/~dakoop/cs503-2021fa/assignment6.html
http://faculty.cs.niu.edu/~dakoop/cs503-2021fa/assignment6.html

14

How do you debug code?

D. Koop, CSCI 503/490, Fall 2021

Debugging
• print statements
• logging library
• pdb
• Extensions for IDEs (e.g. PyCharm)
• JupyterLab Debugger Support

15D. Koop, CSCI 503/490, Fall 2021

https://jupyterlab.readthedocs.io/en/stable/user/debugger.html
https://jupyterlab.readthedocs.io/en/stable/user/debugger.html

Print Statements
• Just print the values or other information about identifiers:
• def my_function(a, b):
 print(a, b)
 print(b - a == 0)
 return a + b

• Note that we need to remember what is being printed
• Can add this to print call, or use f-strings with trailing = which causes the

name and value of the variable to be printed
• def my_function(a, b):
 print(f"{a=} {b=} {b - a == 0}")
 return a + b

16D. Koop, CSCI 503/490, Fall 2021

Print Problems
• Have to uncomment/comment
• Have to remember to get rid of (or comment out) debugging statements

when publishing code
• Print can dump a lot of text (slows down notebooks)
• Can try to be smarter:

- if i % 100 == 0:
 print(i, f"{current_output=}")

- do_print = value == 42
if do_print:
 print(f"{a=} {current_output=}")

17D. Koop, CSCI 503/490, Fall 2021

Logging Library
• Allows different levels of output (e.g. DEBUG, INFO, WARNING, ERROR

CRITICAL)
• Can output to a file as well as stdout/stderr
• Can configure to suppress certain levels or filter messages
• import logging
def my_function(a,b):
 logging.debug(f"{a=} {b=} {b-a == 0}")
 return a + b
my_function(3, 5)

• This doesn't work in notebooks…

18D. Koop, CSCI 503/490, Fall 2021

Logging Library
• Need to set default level (e.g. DEBUG)
• For notebooks, best to define own logger and set level
• import logging
logger = logging.Logger('my-logger')
logger.setLevel(logging.DEBUG)
def my_function(a,b):
 logger.debug(f"{a=} {b=} {b-a == 0}")
 return a + b
my_function(3, 5)

• Prints on stderr, can set to stdout via:
• import sys
logging.basicConfig(stream=sys.stdout, level=logging.DEBUG)

19D. Koop, CSCI 503/490, Fall 2021

Python Debugger (pdb)
• Debuggers offer the ability to inspect and interact with code as it is running
- Define breakpoints as places to stop code and enter the debugger
- Commands to inspect variables and step through code
- Different types of steps (into, over, continue)
- Can have multiple breakpoints in a piece of code

• There are a number of debuggers like those built into IDEs (e.g. PyCharm)
• pdb is standard Python, also an ipdb variant for IPython/notebooks

20D. Koop, CSCI 503/490, Fall 2021

Python Debugger
• Post-mortem inspection:
- In the notebook, use %debug in a new cell to inspect at the line that raised

the exception
• Can have this happen all the time using %pdb magic
• Brings up a new panel that allows debugging interactions

- In a script, run the script using pdb:
• python -m pdb my_script.py

21D. Koop, CSCI 503/490, Fall 2021

Python Debugger
• Breakpoints
- To set a breakpoint, simply add a breakpoint() call in the code
- Before Python 3.7, this required import pdb; pdb.set_trace()
- Run the cell/script as normal and pdb will start when it hits the breakpoint

22D. Koop, CSCI 503/490, Fall 2021

Python Debugger Commands
• p [print expressions]: Print expressions, comma separated
• n [step over]: continue until next line in current function
• s [step into]: stop at next line of code (same function or one being called)
• c [continue]: continue execution until next breakpoint
• l [list code]: list source code (ipdb does this already), also ll (fewer lines)
• b [breakpoints]: list or set new breakpoint (with line number)
• w [print stack trace]: Prints the stack (like what notebook shows during

traceback), u and d commands move up/down the stack
• q [quit]: quit
• h [help]: help (there are many other commands)

23D. Koop, CSCI 503/490, Fall 2021

Jupyter Debugging Support

24D. Koop, CSCI 503/490, Fall 2021

Jupyter Debugging Support

24D. Koop, CSCI 503/490, Fall 2021

25

How do you test code?

D. Koop, CSCI 503/490, Fall 2021

Testing
• If statements
• Assert statements
• Unit Testing
• Integration Testing

26D. Koop, CSCI 503/490, Fall 2021

Testing via Print/If Statements
• Can make sure that types or values satisfy expectations
• if not isinstance(a, str):
 raise Exception("a is not a string")

• if 3 < a <= 7:
 raise Exception("a should not be in (3,7]")

• These may not be something we need to always check during runtime

27D. Koop, CSCI 503/490, Fall 2021

Assertions
• Shortcut for the manual if statements
• Have python throw an exception if a particular condition is not met
• assert is a keyword, part of a statement, not a function
• assert a == 1, "a is not 1"

• Raises AssertionError if the condition is not met, otherwise continues
• Can be caught in an except clause or made to crash the code
• Problem: first failure ends error checks

28D. Koop, CSCI 503/490, Fall 2021

Unit Tests
• "Testing shows the presence, not the absence of bugs", E. Dijkstra
• Want to test many parts of the code
• Try to cover different functions that may or may not be called
• Write functions that test code
• def add(a, b):
 return a + b + 1
def test_add():
 assert add(3,4) == 7, "add not working"
def test_operator():
 assert operator.add(3,4) == 7, "__add__ not working"

• If we just call these in a program, first error stops all testing

29D. Koop, CSCI 503/490, Fall 2021

Unit Testing Framework
• unittest: built in to Python Standard Library
• nose2: nose tests, was nose, now nose2 (some nicer filtering options)
• pytest: extra features like restarting tests from last failed test
• doctest: built-in, allows test specification in docstrings

• With the exception of doctest, the frameworks allow the same specification
of tests

30D. Koop, CSCI 503/490, Fall 2021

unittest
• Subclass from unittest.TestCase, write test_* functions
• Use assert* instance functions
• import unittest

class TestOperators(unittest.TestCase):
 def test_add(self):
 self.assertEqual(add(3, 4), 7)

 def test_add_op(self):
 self.assertEqual(operator.add(3,4), 7)
unittest.main(argv=[''], exit=False)

31D. Koop, CSCI 503/490, Fall 2021

Lots of Assertions
• assertEqual/assertNotEqual: smart about lists/tuples/etc.
• assertLess/assertGreater/assertLessEqual/assertGreaterEqual
• assertAlmostEqual: allows for floating-point arithmetic errors
• assertTrue/assertFalse: check boolean assertions
• assertIsNone: check for None values
• assertIn: check containment
• assertIsInstance
• assertRegex: check that a regex matches
• assertRaises: check that a particular exception is raised

32D. Koop, CSCI 503/490, Fall 2021

Test Options
• Run only certain tests

- argv=[''] # run default set of tests

- argv=['', 'TestLists'] # run all test* methods in TestLists

- argv=['', 'TestAdd.test_add'] # run test_add in TestAdd

• Show more detailed output
- By default, one character per test plus listing at end

• F.

• . indicates success, F indicates failed, E indicates error
- verbosity=2

• test_add (__main__.TestAdd) ... FAIL
test_add_op (__main__.TestAdd) ... ok

33D. Koop, CSCI 503/490, Fall 2021

Startup and Cleanup for Tests
• setUp: instantiate particular objects, read data, etc.
• tearDown: get rid of unnecessary objects
• Example: set up a GUI widget that will be tested

- def setUp(self):
 self.widget = Widget(some_params)
def tearDown(self):
 self.widget.dispose()

• Also functions for setting up classes and modules

34

[Python Documentation]
D. Koop, CSCI 503, Spring 2021

https://docs.python.org/3/library/unittest.html#organizing-tests
https://docs.python.org/3/library/unittest.html#organizing-tests

Mock Testing
• Sometimes we don't want to actually execute all of the code that may be

triggered by a particular test
• Examples: code that posts to Twitter, code that deletes files
• We can mock this behavior by substituting the actual methods with mockers
• Can even simulate side effects like having the function being mocked raise an

exception signifying the network is done

35D. Koop, CSCI 503, Spring 2021

Mock Examples
• Can check whether/how many times the mocked function was called
• from unittest.mock import MagicMock
thing = ProductionClass()
thing.method = MagicMock(return_value=3)
thing.method(3, 4, 5, key='value')
thing.method.assert_called_with(3, 4, 5, key='value')

• from unittest.mock import patch
with patch.object(ProductionClass, 'method',
 return_value=None) as mock_method:
 thing = ProductionClass()
 thing.method(1, 2, 3)
mock_method.assert_called_once_with(1, 2, 3)

36

[Python Documentation]
D. Koop, CSCI 503, Spring 2021

https://docs.python.org/3/library/unittest.mock.html
https://docs.python.org/3/library/unittest.mock.html

