
Programming Principles in Python (CSCI 503/490)

Exceptions

Dr. David Koop

(some slides adapted from Dr. Reva Freedman)

D. Koop, CSCI 503/490, Fall 2021

Object-Based Programming
• With Python's libraries, you often don't need to write your own classes. Just
- Know what libraries are available
- Know what classes are available
- Make objects of existing classes
- Call their methods

• With inheritance and overriding and polymorphism, we have true object-
oriented programming (OOP)

2

[Deitel & Deitel]
D. Koop, CSCI 503/490, Fall 2021

Named Tuples & SimpleNamespace
• Named tuples add the ability to use dot-notation
• from collections import namedtuple
Car = namedtuple('Car', ['make', 'model', 'year', 'color'])
car1 = Car(make='Toyota', model='Camry', year=2000,
 color="red")

• SimpleNamespace does allow mutation:
• from types import SimpleNamespace
car2 = SimpleNamespace(make='Toyota', model='Camry',
 year=2000, color="red")

• Access via dot-notation:
- car1.make # "Toyota"

- car2.year # 2000

3D. Koop, CSCI 503/490, Fall 2021

Typing
• Dynamic Typing: variable's type can change (what Python does)
• Static Typing: compiler enforces types, variable types generally don't change
• Duck Typing: check method/attribute existence, not type
• Python is a dynamically-typed language (and plans to remain so)
• …but it has recently added more support for type hinting/annotations that

allow static type checking
• Type annotations change nothing at runtime!

4

[RealPython, G. A. Hjelle]
D. Koop, CSCI 503/490, Fall 2021

https://realpython.com/python-type-checking/
https://realpython.com/python-type-checking/

Type Annotations
• def area(width : float, height : float) -> float:
 return width * height

• colon (:) after parameter names, followed by type
• arrow (->) after function signature, followed by type (then final colon)
• area("abc", 3) # runs, returns "abcabcabc"

• These won't prevent you from running this function with the wrong
arguments or returning a value that doesn't satisfy the type annotation

• Can use mypy to do static type checking based on annotations

5D. Koop, CSCI 503/490, Fall 2021

When to use typing
• Pros: Good for documentation, Improve IDEs and linters, Build and maintain

cleaner architecture
• Cons: Takes time and effort!, Requires modern Python, Some penalty for

typing imports (can be alleviated)
• No when learning Python
• No for short scripts, snippets in notebooks
• Yes for libraries, especially those used by others
• Yes for larger projects to better understand flow of code

6

[RealPython, G. A. Hjelle]
D. Koop, CSCI 503/490, Fall 2021

https://realpython.com/python-type-checking/
https://realpython.com/python-type-checking/

7

No lecture on Tuesday, October 26

D. Koop, CSCI 503/490, Fall 2021

Assignment 6
• Object-oriented Programming
• Track University Enrollment
• Methods for checking conflicts (e.g. disallow student to have overlapping

courses, take too many credits)
• [503] Methods for changing course time (check the new time works for

everyone)
• Sample code is meant to be run in different cells!
• Due Tuesday, Nov. 2

8D. Koop, CSCI 503/490, Fall 2021

http://faculty.cs.niu.edu/~dakoop/cs503-2021fa/assignment6.html
http://faculty.cs.niu.edu/~dakoop/cs503-2021fa/assignment6.html

Data Classes
• from dataclasses import dataclass
@dataclass
class Rectangle:
 width: float
 height: float

• Rectangle(34, 21) # just works!

• Does a lot of boilerplate tasks
- Creates basic constructor (__init__)
- Creates __repr__ method
- Creates comparison dunder methods (==, !=, <, >, <=, >=)

9D. Koop, CSCI 503/490, Fall 2021

Data Classes
• Requires type annotations, but just like other type annotations, they are not

checked at runtime!
• Rectangle("abc", "def") # no error!

• Use mypy to check typing
• If typing is not important, use typing.Any for types
• from typing import Any
from dataclasses import dataclass
@dataclass
class Rectangle:
 width: Any
 height: Any

10D. Koop, CSCI 503/490, Fall 2021

Data Classes
• Can add methods as normal
• from dataclasses import dataclass
@dataclass
class Rectangle:
 width: float
 height: float

 def area(self):
 return self.width * self.height

• Supports factory methods for more complicated inits
• __post_init__ method for extra processing after __init__

11D. Koop, CSCI 503/490, Fall 2021

Dealing with Errors
• Can explicitly check for errors at each step
- Check for division by zero
- Check for invalid parameter value (e.g. string instead of int)

• Sometimes all of this gets in the way and can't be addressed succinctly
- Too many potential errors to check
- Cannot handle groups of the same type of errors together

• Allow programmer to determine when and how to handle issues
- Allow things to go wrong and handle them instead
- Allow errors to be propagated and addressed once

12D. Koop, CSCI 503/490, Fall 2021

Advantages of Exceptions
• Separate error-handling code from "regular" code
• Allows propagation of errors up the call stack
• Errors can be grouped and differentiated

13

[Java Tutorial, Oracle]
D. Koop, CSCI 503/490, Fall 2021

https://docs.oracle.com/javase/tutorial/essential/exceptions/advantages.html
https://docs.oracle.com/javase/tutorial/essential/exceptions/advantages.html

Try-Except
• The try statement has the following form:
try:
 <body>
except <ErrorType>*:
 <handler>

• When Python encounters a try statement, it attempts to execute the
statements inside the body.

• If there is no error, control passes to the next statement after the try…
except (unless else or finally clauses)

• Note: except not catch

14D. Koop, CSCI 503/490, Fall 2021

Try-Except
• If an error occurs while executing the body, Python looks for an except clause

with a matching error type. If one is found, the handler code is executed.
• try:
 c = a / b
except ZeroDivisionError:
 c = 0

• Without the except clause (or one that doesn't match), the code crashes

15D. Koop, CSCI 503/490, Fall 2021

Exception Hierarchy
• Python's BaseException class is the base class for all exceptions
• Four primary subclasses:

- SystemExit: just terminates program execution
- KeyboardInterrupt: occurs when user types Crl+C or selects Interrupt

Kernel in Jupyter
- GeneratorExit: generator done producing values
- Exception: most exceptions subclass from this!

• ZeroDivisionError, NameError, ValueError, IndexError
• Most exception handling is done for these exceptions

16D. Koop, CSCI 503/490, Fall 2021

Exception Hierarchy
• Except clauses match when error is an instance of specified exception class
• Remember isinstance matches objects of subclasses!
• try:
 c = a / b
except Exception:
 c = 0

• Can also have a bare except clause (matches any exception!)
• try:
 c, d = a / b
except:
 c, d = 0, 0

• …but DON'T do this!

17D. Koop, CSCI 503/490, Fall 2021

Exception Granularity
• If you catch any exception using a base class near the top of the hierarchy,

you may be masking code errors
• try:
 c, d = a / b
except Exception:
 c, d = 0, 0

• Remember Exception catches any exception is an instance of Exception
• Catches TypeError: cannot unpack non-iterable float object
• Better to have more granular (specific) exceptions!
• We don't want to catch the TypeError because this is a programming error

not a runtime error

18D. Koop, CSCI 503/490, Fall 2021

Exception Locality
• Generally, want try statement to be specific to a part of the code
• try:
 with open('missing-file.dat') as f:
 lines = f.readlines()
 with open('output-file.dat', 'w') as fout:
 fout.write("Testing")
except OSError:
 print("An error occurred processing files.")

• We don't know whether reading failed or writing failed
• Maybe that is ok, but having multiple try-except clauses might help

19

[Deitel & Deitel]
D. Koop, CSCI 503/490, Fall 2021

Exception Locality
• try:
 fname = 'missing-file.dat'
 with open(fname) as f:
 lines = f.readlines()
except OSError:
 print(f"An error occurred reading {fname}")
try:
 out_fname = 'output-file.dat'
 with open('output-file.dat', 'w') as fout:
 fout.write("Testing")
except OSError:
 print(f"An error occurred writing {out_fname}")

20D. Koop, CSCI 503/490, Fall 2021

Multiple Except Clauses
• May also be able to address with multiple except clauses:
• try:
 fname = 'missing-file.dat'
 with open(fname) as f:
 lines = f.readlines()
 out_fname = 'output-file.dat'
 with open('output-file.dat', 'w') as fout:
 fout.write("Testing")
except FileNotFoundError:
 print(f"File {fname} does not exist")
except PermissionError:
 print(f"Cannot write to {out_fname}")

• However, other OSError problems (disk full, etc.) won't be caught

21D. Koop, CSCI 503/490, Fall 2021

Multiple Except Clauses
• Function like an if/elif sequence
• Checked in order so put more granular exceptions earlier!
• try:
 fname = 'missing-file.dat'
 with open(fname) as f:
 lines = f.readlines()
 out_fname = 'output-file.dat'
 with open('output-file.dat', 'w') as fout:
 fout.write("Testing")
except FileNotFoundError:
 print(f"File {fname} does not exist")
except OSError:
 print("An error occurred processing files")

22D. Koop, CSCI 503/490, Fall 2021

Multiple Except Clauses
• Function like an if/elif sequence
• Checked in order so put more granular exceptions earlier!
• try:
 fname = 'missing-file.dat'
 with open(fname) as f:
 lines = f.readlines()
 out_fname = 'output-file.dat'
 with open('output-file.dat', 'w') as fout:
 fout.write("Testing")
except OSError:
 print("An error occurred processing files")
except FileNotFoundError:
 print(f"File {fname} does not exist")

23D. Koop, CSCI 503/490, Fall 2021

Multiple Except Clauses
• Function like an if/elif sequence
• Checked in order so put more granular exceptions earlier!
• try:
 fname = 'missing-file.dat'
 with open(fname) as f:
 lines = f.readlines()
 out_fname = 'output-file.dat'
 with open('output-file.dat', 'w') as fout:
 fout.write("Testing")
except OSError:
 print("An error occurred processing files")
except FileNotFoundError:
 print(f"File {fname} does not exist")

23D. Koop, CSCI 503/490, Fall 2021

Bare Except
• The bare except clause acts as a catch-all (elif any other exception)
• try:
 fname = 'missing-file.dat'
 with open(fname) as f:
 lines = f.readlines()
 out_fname = 'output-file.dat'
 with open('output-file.dat', 'w') as fout:
 fout.write("Testing")
except FileNotFoundError:
 print(f"File {fname} does not exist")
except OSError:
 print("An error occurred processing files")
except:
 print("Any other error goes here")

24D. Koop, CSCI 503/490, Fall 2021

Handling Multiple Exceptions at Once
• Can process multiple exceptions with one clause, use tuple of classes
• Allows some specificity but without repeating
• try:
 fname = 'missing-file.dat'
 with open(fname) as f:
 lines = f.readlines()
 out_fname = 'output-file.dat'
 with open('output-file.dat', 'w') as fout:
 fout.write("Testing")
except (FileNotFoundError, PermissionError):
 print("An error occurred processing files")

25D. Koop, CSCI 503/490, Fall 2021

Exception Objects
• Exceptions themselves are a type of object.
• If you follow the error type with an identifier in an except clause, Python will

assign that identifier the actual exception object.
• Sometimes exceptions encode information that is useful for handling
• try:
 fname = 'missing-file.dat'
 with open(fname) as f:
 lines = f.readlines()
 out_fname = 'output-file.dat'
 with open('output-file.dat', 'w') as fout:
 fout.write("Testing")
except OSError as e:
 print(e.errno, e.filename, e)

26D. Koop, CSCI 503/490, Fall 2021

Else Clause
• Code that executes if no exception occurs
• b = 3
a = 2
try:
 c = b / a
except ZeroDivisionError:
 print("Division failed")
 c = 0
else:
 print("Division successful:", c)

27D. Koop, CSCI 503/490, Fall 2021

Finally
• Code that always runs, regardless of whether there is an exception
• b = 3
a = 0
try:
 c = b / a
except ZeroDivisionError:
 print("Division failed")
 c = 0
finally:
 print("This always runs")

28D. Koop, CSCI 503/490, Fall 2021

Finally
• Code that always runs, regardless of whether there is an exception
• …even if the exception isn't handled!
• b = 3
a = 0
try:
 c = b / a
finally:
 print("This always runs, even if we crash")

• Remember that context managers (e.g. for files) have built-in cleanup clauses

29D. Koop, CSCI 503/490, Fall 2021

Nesting
• You can nest try-except clauses inside of except clauses, too.
• Example: perhaps a file load could fail so you want to try an alternative

location but want to know if that fails, too.
• Can even do this in a finally clause:
• try:
 c = b / a
finally:
 try:
 print("This always runs", 3/0)
 except ZeroDivisionError:
 print("It is silly to only catch this exception")

30D. Koop, CSCI 503/490, Fall 2021

Raising Exceptions
• Create an exception and raise it using the raise keyword
• Pass a string that provides some detail
• Example: raise Exception("This did not work correctly")
• Try to find a exception class:

- ValueError: if an argument doesn't fit the functions expectations
- NotImplementedError: if a method isn't implemented (e.g. abstract cls)

• Be specific in the error message, state actual values
• Can also subclass from existing exception class, but check if existing

exception works first
• Some packages create their own base exception class (RequestException)

31D. Koop, CSCI 503/490, Fall 2021

Re-raising and Raising From
• Sometimes, we want to detect an exception but also pass it along
• try:
 c = b / a
except ZeroDivisionError:
 print("Division failed")
 raise

• Raising from allows exception to show specific chain of issues
• try:
 c = b / a
except ZeroDivisionError as e:
 print("Division failed")
 raise ValueError("a cannot be zero") from e

• Usually unnecessary because Python does the right thing here (shows chain)
32D. Koop, CSCI 503/490, Fall 2021

Making Sense of Exceptions
• When code (e.g. a cell) crashes, read the traceback (IPython feature!):
• ZeroDivisionError Traceback (most recent call last)
<ipython-input-58-488e97ad7d74> in <module>
 4 return divide(a+b, a-b)
 5 for i in range(4):
----> 6 process(3, i)
<ipython-input-58-488e97ad7d74> in process(a, b)
 3 return c / d
----> 4 return divide(a+b, a-b)
 5 for i in range(4):
<ipython-input-58-488e97ad7d74> in divide(c, d)
 2 def divide(c, d):
----> 3 return c / d
 4 return divide(a+b, a-b)
ZeroDivisionError: division by zero

33D. Koop, CSCI 503/490, Fall 2021

Making Sense of Exceptions
• Start at the bottom: last line is the exception message
• Nesting goes outside-in: innermost scope is last, outermost scope is first
• Arrows point to the line of code that caused errors at each scope
• Surrounding lines give context

34D. Koop, CSCI 503/490, Fall 2021

Making Sense of Exceptions
• Sometimes, exception handling can mask actual issue!
• def process(a, b):
 …
for i in range(4):
 try:
 process(3, i)
 except ZeroDivisionError:
 raise Exception(f"Cannot process i={i}") from None

• Exception Traceback (most recent call last)
<ipython-input-60-6d0289010945> in <module>
 7 process(3, i)
 8 except ZeroDivisionError:
----> 9 raise Exception(f"Cannot process i={i}") from None
Exception: Cannot process i=3

• Usually, Python includes inner exception (from None stops the chain)
35D. Koop, CSCI 503/490, Fall 2021

Making Sense of Exceptions
• Probably the worst thing is to ignore all exceptions:
• def process(a, b):
 …
result = []
for i in range(6):
 try:
 result.append(process(3, i))
 except:
 pass

• This may seem like the easy way out, don't have to worry about errors, but
can mask major issues in the code!

• Be specific (granularity), try to handle cases when something goes wrong,
crash gracefully if it is an unexpected error

36D. Koop, CSCI 503/490, Fall 2021

