
Programming Principles in Python (CSCI 503/490)

Object-Oriented Programming

Dr. David Koop

D. Koop, CSCI 503/490, Fall 2021

Inheritance
• Is-a relationship: Car is a Vehicle, Truck is a Vehicle
• Make sure it isn't composition (has-a) relationship: Vehicle has wheels,

Vehicle has a steering wheel
• Subclass is specialization of base class (superclass)
- Car is a subclass of Vehicle, Truck is a subclass of Vehicle

• Can have an entire hierarchy of classes (e.g. Chevy Bolt is subclass of Car
which is a subclass of Vehicle)

• Single inheritance: only one base class
• Multiple inheritance: allows more than base class
- Many languages don't support, Python does

2D. Koop, CSCI 503/490, Fall 2021

Instance Attribute Conventions in Python
• Remember, the naming is the convention
• public: used anywhere
• _protected: used in class and subclasses
• __private: used only in the specific class
• Note that double underscores induce name mangling to strongly discourage

access in other entities

3D. Koop, CSCI 503/490, Fall 2021

Subclass
• Just put superclass(-es) in parentheses after the class declaration
• class Car(Vehicle):
 def __init__(self, make, model, year, color, num_doors):
 super().__init__(make, model, year, color)
 self.num_doors = num_doors

 def open_door(self):
 …

• super() is a special method that locates the base class
- Constructor should call superclass constructor
- Extra arguments should be initialized and extra instance methods

4D. Koop, CSCI 503/490, Fall 2021

Overriding Methods
• class Rectangle:
 def __init__(self, height,
 width):
 self.h = height
 self.w = weight

 def set_height(self, height):
 self.h = height
 def area(self):
 return self.h * self.w

• class Square(Rectangle):
 def __init__(self, side):
 super().__init__(side, side)

 def set_height(self, height):
 self.h = height
 self.w = height

• s = Square(4)

• s.set_height(8)

- Which method is called?
- Polymorphism
- Resolves according to inheritance

hierarchy
• s.area() # 64

- If no method defined, goes up the
inheritance hierarchy until found

5D. Koop, CSCI 503/490, Fall 2021

Class and Static Methods
• Use @classmethod and @staticmethod decorators
• Difference: class methods receive class as argument, static methods do not
• class Square(Rectangle):
 DEFAULT_SIDE = 10
 …

 @classmethod
 def set_default_side(cls, s):
 cls.DEFAULT_SIDE = s

 @staticmethod
 def set_default_side_static(s):
 Square.DEFAULT_SIDE = s

6D. Koop, CSCI 503/490, Fall 2021

Class and Static Methods
• class Square(Rectangle):
 DEFAULT_SIDE = 10

 def __init__(self, side=None):
 if side is None:
 side = self.DEFAULT_SIDE
 super().__init__(side, side)
 …

• Square.set_default_side(20)
s2 = Square()
s2.side # 20

• Square.set_default_side_static(30)
s3 = Square()
s3.side # 30

7D. Koop, CSCI 503/490, Fall 2021

Class and Static Methods
• class NewSquare(Square):
 DEFAULT_SIDE = 100

• NewSquare.set_default_side(200)
s5 = NewSquare()
s5.side # 200

• NewSquare.set_default_side_static(300)
s6 = NewSquare()
s6.side # !!! 200 !!!

• Why?
- The static method sets Square.DEFAULT_SIDE not the
NewSquare.DEFAULT_SIDE

- self.DEFAULT_SIDE resolves to NewSquare.DEFAULT_SIDE

8D. Koop, CSCI 503/490, Fall 2021

Duck Typing
• "If it looks like a duck and quacks like a duck, it must be a duck."
• Python "does not look at an object’s type to determine if it has the right

interface; instead, the method or attribute is simply called or used"
• class Rectangle:
 def area(self):
 …

• class Circle:
 def area(self):
 …

• It doesn't matter that they don't have a common base class as long as they
respond to the methods/attributes we expect: shape.area()

9

[Python Glossary]
D. Koop, CSCI 503/490, Fall 2021

https://docs.python.org/3/glossary.html#term-duck-typing
https://docs.python.org/3/glossary.html#term-duck-typing

Multiple Inheritance
• Can have a class inherit from two different superclasses
• HybridCar inherits from Car and Hybrid
• Python allows this!

- class HybridCar(Car, Hybrid): …

• Problem: how is super() is defined?
- Diamond Problem
- Python use the method resolution order (MRO) to determine order of calls

10D. Koop, CSCI 503/490, Fall 2021

Method Resolution Order
• The order in which Python checks classes for a method
• mro() is a class method
• Square.mro() # [__main__.Square, __main__.Rectangle, object]

• Order of base classes matters:
- class HybridCar(Car, Hybrid):
 pass
HybridCar.mro() # [__main__.HybridCar, __main__.Car,
 __main__.Hybrid, __main__.Vehicle, object]

- class HybridCar(Hybrid, Car):
 pass
HybridCar.mro() # [__main__.HybridCar, __main__.Hybrid,
 __main__.Car, __main__.Vehicle, object]

11D. Koop, CSCI 503/490, Fall 2021

Assignment 5
• Due Today
• Scripts and Modules
• Write a three modules in a Python package with methods to process the

Senate stock tracking data
• Write a script with command-line arguments to analyze this data using the

new package
• Turn in a zip file with package and script
• No notebook required, but useful to test your code as you work

- %autoreload or importlib.reload

12D. Koop, CSCI 503/490, Fall 2021

http://faculty.cs.niu.edu/~dakoop/cs503-2021fa/assignment5.html
http://faculty.cs.niu.edu/~dakoop/cs503-2021fa/assignment5.html

Assignment 6
• Out soon
• Writing classes and using objects

13D. Koop, CSCI 503/490, Fall 2021

Mixins
• Sometimes, we just want to add a particular method to a bunch of different

classes
• For example: print_as_dict()
• A mixin class allows us to specify one or more methods and add it as the

second
• Caution: Python searches from left to right so a base class should be at the

right with mixing

14D. Koop, CSCI 503/490, Fall 2021

Operator Overloading
• Dunder methods (__add__, __contains__, __len__)
• Example:

- class Square(Rectangle):
 …
 @property
 def side(self):
 return self.h
 def __add__(self, right):
 return Square(self.side + right.side)
 def __repr__(self):
 return f'{self.__class__.__name__}({self.side})'
new_square = Square(8) + Square(4)
new_square # Square(12)

15D. Koop, CSCI 503/490, Fall 2021

Operator Overloading Restrictions
• Precedence cannot be changed by overloading. However, parentheses can

be used to force evaluation order in an expression.
• The left-to-right or right-to-left grouping of an operator cannot be changed
• The “arity” of an operator—that is, whether it’s a unary or binary operator—

cannot be changed.
• You cannot create new operators—only overload existing operators
• The meaning of how an operator works on objects of built-in types cannot be

changed. You cannot change + so that it subtracts two integers
• Works only with objects of custom classes or with a mixture of an object of a

custom class and an object of a built-in type.

16

[Deitel & Deitel]
D. Koop, CSCI 503/490, Fall 2021

Ternary Operator
• a = b < 5 ? b + 5 : b - 5
• Kind of a weird construct, but can be a nice shortcut
• <value> if <condition> else <value>

• absx = x if x >= 0 else -x

• Reads so that the usual is listed first and the abnormal case is listed last
• "Usually this, else default to this other"

17D. Koop, CSCI 503/490, Fall 2021

Exercise
• Create Stack and Queue classes
- Stack: last-in-first-out
- Queue: first-in-first-out

• Define constructor and push and pop methods for each

18D. Koop, CSCI 503/490, Fall 2021

Object-Based Programming
• With Python's libraries, you often don't need to write your own classes. Just
- Know what libraries are available
- Know what classes are available
- Make objects of existing classes
- Call their methods

• With inheritance and overriding and polymorphism, we have true object-
oriented programming (OOP)

19

[Deitel & Deitel]
D. Koop, CSCI 503/490, Fall 2021

Named Tuples
• Tuples are immutable, but cannot refer to with attribute names, only indexing
• Named tuples add the ability to use dot-notation
• from collections import namedtuple
Car = namedtuple('Car', ['make', 'model', 'year', 'color'])
car1 = Car(make='Toyota', model='Camry', year=2000,
 color="red")

• Can use kwargs or positional or mix
• car2 = Car('Ford', 'F150', 2018, 'gray')

• Access via dot-notation:
- car1.make # "Toyota"

- car2.year # 2018

20D. Koop, CSCI 503/490, Fall 2021

SimpleNamespace
• Named tuples do not allow mutation
• SimpleNamespace does allow mutation:
• from types import SimpleNamespace
car3 = SimpleNamespace(make='Toyota', model='Camry',
 year=2000, color="red")

• car3.num_doors = 4 # would fail for namedtuple

• Doesn't enforce any structure, though

21D. Koop, CSCI 503/490, Fall 2021

Typing
• Dynamic Typing: variable's type can change (what Python does)
• Static Typing: compiler enforces types, variable types generally don't change
• Duck Typing: check method/attribute existence, not type
• Python is a dynamically-typed language (and plans to remain so)
• …but it has recently added more support for type hinting/annotations that

allow static type checking
• Type annotations change nothing at runtime!

22

[RealPython, G. A. Hjelle]
D. Koop, CSCI 503/490, Fall 2021

https://realpython.com/python-type-checking/
https://realpython.com/python-type-checking/

Type Annotations
• def area(width : float, height : float) -> float:
 return width * height

• colon (:) after parameter names, followed by type
• arrow (->) after function signature, followed by type (then final colon)
• area("abc", 3) # runs, returns "abcabcabc"

• These won't prevent you from running this function with the wrong
arguments or returning a value that doesn't satisfy the type annotation

• Extensions for collections allows inner types to be specified:
- from typing import List
names : List[str] = ['Alice', 'Bob']

• Any and Optional, too

23D. Koop, CSCI 503/490, Fall 2021

mypy
• A static type checker for Python that uses the type annotations to check

whether types work out
• $ mypy <script.py>

- Writes type errors tagged by the line of code that introduced them
- Can also reveal the types of variables at various parts of the program

• There is an extension for Jupyter (mypy_ipython), but it basically works by
converting all cells to a script and then running mypy

- Cells not tagged in error messages
- Re-running cells introduces multiple copies of error
- Deleting cells doesn't remove errors

24D. Koop, CSCI 503/490, Fall 2021

Type Checking in Development Environments
• PyCharm can also use the type hints to do static type checking to alert

programmers to potential issues
• Microsoft VS Code Integration using Pyright

25D. Koop, CSCI 503/490, Fall 2021

https://github.com/microsoft/pyright
https://github.com/microsoft/pyright

Type Checking Pros & Cons
• Pros:
- Good for documentation
- Improve IDEs and linters
- Build and maintain cleaner architecture

• Cons:
- Takes time and effort!
- Requires modern Python
- Some penalty for typing imports (can be alleviated)

26

[RealPython, G. A. Hjelle]
D. Koop, CSCI 503/490, Fall 2021

https://realpython.com/python-type-checking/
https://realpython.com/python-type-checking/

When to use typing
• No when learning Python
• No for short scripts, snippets in notebooks
• Yes for libraries, especially those used by others
• Yes for larger projects to better understand flow of code

27

[RealPython, G. A. Hjelle]
D. Koop, CSCI 503/490, Fall 2021

https://realpython.com/python-type-checking/
https://realpython.com/python-type-checking/

