Programming Principles in Python (CSCI 503/490)

Arrays

Dr. David Koop

D. Koop, CSCI 503/490, Fall 2021 Northern Illinois University

Modules and Packages

e Python allows you to import code from other files, even your own
e A module is a collection of definitions

e A package is an organized collection of modules

e \odules can be

- a separate python file
- a separate C library that is written to be used with Python

- a built-in module contained In the interpreter
- a module installed by the user (via conda or pip)
o All types use the same import syntax

|[RealPython]

D. Koop, CSCI 503/490, Fall 2021 Northern Illinois University =~ 2

https://realpython.com/python-modules-packages/

What is the purpose of having modules or packages”

e Code reuse: makes life easier because others have written solutions to
various problems

e (Generally forces an organization of code that works together
o Standardizes interfaces; easier maintenance
® Encourages robustness, testing code

e [his does take time so don't always create a module or package
- If you're going to use a method once, it's not worth putting it in a module

- If you're using the same methods over and over in (especially in different
projects), a module or package makes sense

D. Koop, CSCI 503/490, Fall 2021 Northern Illinois University 3

Importing modules

e .mport <module>

e 1mport <module> as <another-identifier>

¢ from <module> 1Import <identifer-list>

e from <module> i1mport <identifer> as <another-identifier>,

* import Imports from the top, from ... import IMPOorts "INNer’ names
e Need to use the qualified names when using import (foo.bar.mymethod)

® as clause renames the imported name

D. Koop, CSCI 503/490, Fall 2021 Northern Illinois University 4

Namespaces

e Namespace is basically a dictionary with
names and their values

® ACCessing namespaces
- builltins , globals(), locals ()

e Fxamine contents of a namespace:
dir (<namespace>)

e Python checks for a name in the sequence:
local, enclosing, global, builtins

e Fach import <module> creates a
namespace; access it through dot-syntax:

- ExXamples: math.pi, collections.Counter

|[RealPython]

D. Koop, CSCI 503/490, Fall 2021 Northern Illinois University 5

https://realpython.com/python-namespaces-scope/

Using an imported module

e |mport module, and call functions with fully qualified name (its namespace)

- 1mport math

math.logl0 (100)
math.sgrt (196)

o Import module Into current namespace and use unqualified name

- from math import 1logl0O, sqgrt
1ogl0 (100)
sgrt (196)

D. Koop, CSCI 503/490, Fall 2021 Northern Illinois University 6

Reloading a Module”?

e |f you re-import a module, what happens?

- 1mport my module
my module.SECRET NUMBER 47

- Change the definition of SECRET NUMBER tO 14

- Import my module
my module.SECRET NUMBER Still 42!

* Modules are cached so they are not reloaded on each import call
e Can reload a module via importlib.reload (<module>)

e Be careful because dependencies will persist! (Order matters)

D. Koop, CSCI 503/490, Fall 2021 Northern Illinois University 7

Python Packages

e A package Is basically a collection of modules Iin a directory subtree
e Structures a module namespace by allowing dotted names

e Example:
- test pkg/
1nit .py
foo.py
bar.py
baz/
fun.py
e FOr packages that are to be executed as scripts, main .py can also be
added

D. Koop, CSCI 503/490, Fall 2021 Northern Illinois University 8

Example

D. Koop, CSCI 503/490, Fall 2021 Northern Illinois University 9

FINding Packages

e Python Package Index (PyPl) is the standard repository (https://pypi.org) and
pip (pip Installs packages) is the official python package installer

- Types of distribution: source (sdist) and wheels (binaries)
- Each package can specify dependencies
- Creating a PyP| package requires adding some metadata
e Anaconda is a package index, conda is a package manager
- conda is language-agnostic (not only Python)
- solves dependencies
- conda deals with non-Python dependencies
- has different channels: default, conda-forge (community-led)

D. Koop, CSCI 503/490, Fall 2021 Northern Illinois University 10

https://pypi.org
https://anaconda.org

Installing Packages

e p1p 1nstall <package—-name>

e conda 1nstall <package—-name>
* |n Jupyter use:

- 3plp 1nstall <package—-name>

- sconda 1install <package-name>
e Arguments can be multiple packages

e Be carefull Security exploits using package installation and dependencies
(e.qg. Alex Birsan)

D. Koop, CSCI 503/490, Fall 2021 Northern Illinois University 11

https://medium.com/@alex.birsan/dependency-confusion-4a5d60fec610

ENnvironments

e Both pip and conda support environments
- venv
- conda env
¢ |dea Is that you can create different environments for different work
- environment for csb03
- environment for research
- environment for each project

D. Koop, CSCI 503/490, Fall 2021 Northern Illinois University =~ 12

Assignment 4

e Due loday

e UDSA Food Price Data

e Reading & Writing Files

® |[terators

e Numeric Aggregation

e String Formatting

o CSCI 503 students compute and output two additional fields

D. Koop, CSCI 503/490, Fall 2021 Northern Illinois University 13

http://faculty.cs.niu.edu/~dakoop/cs503-2021fa/assignment4.html

Assignment 5

e Scripts, modules, packages
® S00N

D. Koop, CSCI 503/490, Fall 2021 Northern Illinois University 14

Arrays

What is the difference between an array and a list (or a tuple)?

D. Koop, CSCI 503/490, Fall 2021 Northern Illinois University 15

Arrays

e Usually a fixed size—Ilists are meant to change size
e Are mutable —tuples are not
e Store only one type of data—lists and tuples can store any combination
e Are faster to access and manipulate than lists or tuples
e Can be multidimensional:
- Can have list of lists or tuple of tuples but no guarantee on shape
- Multidimensional arrays are rectangles, cubes, etc.

D. Koop, CSCI 503/490, Fall 2021 Northern Illinois University 16

Why NumPy*?

e Fast vectorized array operations for data munging and cleaning, subsetting
and filtering, transtformation, and any other kinds of computations

e Common array algorithms like sorting, unique, and set operations
o fficient descriptive statistics and aggregating/summarizing data

e Data alignment and relational data manipulations for merging and joining
together heterogeneous data sets

e EXpressing conditional logic as array expressions instead of loops with if-
elif-else branches

e (Group-wise data manipulations (aggregation, transformation, function
application).

[W. McKinney, Python for Data Analysis]

D. Koop, CSCI 503/490, Fall 2021 Northern Illinois University 17

1mport numpy as np

D. Koop, CSCI 503/490, Fall 2021 Northern Illinois University 18

Creating arrays
e datal = [o6, 7, 8, 0, 1]

arrl = np.array(datal)
e dataz = [[1.5,2,3,4],[5,0,7,8]]
arrZ2 = np.array(data?z)
e datal3 = np.array([ob, "abc", 3.57]) 't check 11

e Can check the type of an array in dtype property

® [ypes:
- arrl.dtype dtype ('1nto4d')

- arr3.dtype dtype ('<U21'"), unilcode plus chars

D. Koop, CSCI 503/490, Fall 2021 Northern Illinois University =~ 19

lypes

o "But | thought Python wasn't stingy about types..."
® NUMPY aims for speed

e Able to do array arithmetic

e Nt106, INt32, Int64, float32, floato4, bool, object

e Can specify type explicitly
- arrl float = np.array(datal, dtype='tfloatod')

* astype Method allows you to convert between different types of arrays:

arr = np.array([1l, 2, 3, 4, 5])
arr.dtype
float arr = arr.astype(np.floato4d)

D. Koop, CSCI 503/490, Fall 2021 Northern Illinois University 20

nuMmpy data types (dtypes)

Type Type code Description

int8, uint8 11, ul Signed and unsigned 8-bit (1 byte) integer types

intl6, uintl6 12, u2 Signed and unsigned 16-bit integer types

int32, uint32 14, u4d Signed and unsigned 32-bit integer types

int64, uint64 18, u8 Signed and unsigned 64-bit integer types

floatil6 f2 Half-precision floating point

float32 f4 or f Standard single-precision floating point; compatible with C float

float64 f8 or d Standard double-precision floating point; compatible with C double and
Python float object

float128 f16 or g Extended-precision floating point

complex64, c8, cl6, Complex numbers represented by two 32, 64, or 128 floats, respectively

comp Lex128, c32

comp lex256

bool ! Boolean type storing True and Fa'lse values

object 0 Python object type; a value can be any Python object

string_ S Fixed-length ASCII string type (1 byte per character); for example, to create a

string dtype with length 10, use 'S10'

unicode_ U Fixed-length Unicode type (number of bytes platform specific); same
specification semantics as string_ (e.q., 'U10")

M.-MeKinney, Python for Data Analysis]

D. Koop, CSCI 503/490, Fall 2021 Northern Illinois University =~ 21

Array Shape

e Our normal way of checking the size of a collection is... 1len

e How does this work for arrays?
e arrl = np.array([1,2,3,6,9])

len(arrl) 9
e arr2 = np.array([[1.5,2,3,41,15,6,7,81])
len (arr?) %

e All dimension lengths = shape: arr2.shape (2,4)

e Number of dimensions: arr2 .ndim 2

e Can also reshape an array:

- arr2Z2.reshape (4, 2)

- arrZ.reshape (-1, 2) what happens here?

D. Koop, CSCI 503/490, Fall 2021 Northern Illinois University =~ 22

Speed Benefits

e Compare random number generation in pure Python versus numpy

* Python:
- 1mport random
stimelt rolls list = [random.randrange(l,7)
for 1 1n range (0, 60 000)]
o \With NumPy:
- stimeit rolls array = np.random.randint(l, 7, 60 000)

e Significant speedup (80x+)

D. Koop, CSCI 503/490, Fall 2021 Northern Illinois University =~ 23

Array Programming

o | |sts:

- c = []

for 1 1n range(len(a)) :
c.append(afi1] + b[1])

e How to improve this?

D. Koop, CSCI 503/490, Fall 2021 Northern Illinois University =~ 24

Array Programming

o | |sts:

- c = []

for 1 1n range(len(a)) :
c.append(afi1] + b[1])

- ¢ = [aa + bb for aa, bb 1n zip(a,b)]

e NumPy arrays:
-Cc =a + D

e \ore functional-style than imperative
¢ |[nternal iteration instead of external

D. Koop, CSCI 503/490, Fall 2021 Northern Illinois University =~ 25

Operations

e a = np.arrav([1,2,3])
b = np.arrav([6,4,3])

e (Array, Array) Operations (Element-wise)

- Addition, Subtraction, Multiplication
- a + b arravy([7, 6, ©6])

e (Scalar, Array) Operations (Broadcasting):
- Addition, Subtraction, Multiplication, Division, Exponentiation
- a ** 2 array([1l, 4, 9])
- b + 3 array([9, 7, ©])

D. Koop, CSCI 503/490, Fall 2021 Northern Illinois University = 26

More on Array Creation

® /er0S: np.zeros (10)

e Ones: np.ones ((4,5)) shape
o EmMpty: np.empty ((2,2))

e |ike versions: pass an existing array and matches shape with specitied
contents

e Range: np.arange (15) constructs an array, not iterator!

D. Koop, CSCI 503/490, Fall 2021 Northern Illinois University =~ 27

Indexing

e Same as with lists plus shorthand for 2D+
- arrl = np.array([o6, 7, &8, 0, 11)
- arrl|[1]

- arrl[-1]

e \\Vhat about two dimensions”?
- arr2 = np.array([[1.5,2,3,4],[5,06,7,8]1)
- arr[1][1]

-arr[1l,1] shorthand

D. Koop, CSCI 503/490, Fall 2021 Northern Illinois University 28

2D Indexing

axis 1
0 1 2

[W. McKinney, Python for Data Analysis]

D. Koop, CSCI 503/490, Fall 2021 Northern Illinois University =~ 29

Slicing

e 1D: Similar to lists
- arrl = np.array([o6, 7, &8, 0, 11)

B

- arrl[2:5] np.array([8,0,1]), sort of

e Can mutate original array:

- arrl[2:5] = 3 supports assignment

- arrl] the original array changed

e Slicing returns views (copy the array if original array shouldn't change)
- arrl[2:5] a view

- arrl[2:5].copy () a new array

D. Koop, CSCI 503/490, Fall 2021 Northern Illinois University 30

Slicing

o ?D+: comma separated indices as shorthand:
- arr2 = np.array([[1.5,2,3,4],[5,06,7,8]1)
-al[l:3,1:3]

-all:3,:] works like 1n single-dimensional lists

e Can combine index and slice in different dimensions

-all, :] glves a Irow

- al:, 1] glives a column

D. Koop, CSCI 503/490, Fall 2021 Northern Illinois University 31

2D Array Slicing

How to obtain the blue slice
from array arr”?

[W. McKinney, Python for Data Analysis]

D. Koop, CSCI 503/490, Fall 2021 Northern Illinois University =~ 32

2D Array Slicing

How to obtain the blue slice
from array arr”?

arr|[:2,1:]

[W. McKinney, Python for Data Analysis]

D. Koop, CSCI 503/490, Fall 2021 Northern Illinois University 33

