
Programming Principles in Python (CSCI 503/490)

Arrays

Dr. David Koop

D. Koop, CSCI 503/490, Fall 2021

Modules and Packages
• Python allows you to import code from other files, even your own
• A module is a collection of definitions
• A package is an organized collection of modules
• Modules can be
- a separate python file
- a separate C library that is written to be used with Python
- a built-in module contained in the interpreter
- a module installed by the user (via conda or pip)

• All types use the same import syntax

2

[RealPython]
D. Koop, CSCI 503/490, Fall 2021

https://realpython.com/python-modules-packages/

What is the purpose of having modules or packages?
• Code reuse: makes life easier because others have written solutions to

various problems
• Generally forces an organization of code that works together
• Standardizes interfaces; easier maintenance
• Encourages robustness, testing code

• This does take time so don't always create a module or package
- If you're going to use a method once, it's not worth putting it in a module
- If you're using the same methods over and over in (especially in different

projects), a module or package makes sense

3D. Koop, CSCI 503/490, Fall 2021

Importing modules
• import <module>

• import <module> as <another-identifier>

• from <module> import <identifer-list>

• from <module> import <identifer> as <another-identifier>, …

• import imports from the top, from … import imports "inner" names
• Need to use the qualified names when using import (foo.bar.mymethod)
• as clause renames the imported name

4D. Koop, CSCI 503/490, Fall 2021

Namespaces
• Namespace is basically a dictionary with

names and their values
• Accessing namespaces

- __builtins__, globals(), locals()
• Examine contents of a namespace:
dir(<namespace>)

• Python checks for a name in the sequence:
local, enclosing, global, builtins

• Each import <module> creates a
namespace; access it through dot-syntax:

- Examples: math.pi, collections.Counter

5

[RealPython]
D. Koop, CSCI 503/490, Fall 2021

https://realpython.com/python-namespaces-scope/

Using an imported module
• Import module, and call functions with fully qualified name (its namespace)

- import math
math.log10(100)
math.sqrt(196)

• Import module into current namespace and use unqualified name
- from math import log10, sqrt
log10(100)
sqrt(196)

6D. Koop, CSCI 503/490, Fall 2021

Reloading a Module?
• If you re-import a module, what happens?

- import my_module
my_module.SECRET_NUMBER # 42

- Change the definition of SECRET_NUMBER to 14
- import my_module
my_module.SECRET_NUMBER # Still 42!

• Modules are cached so they are not reloaded on each import call
• Can reload a module via importlib.reload(<module>)
• Be careful because dependencies will persist! (Order matters)

7D. Koop, CSCI 503/490, Fall 2021

Python Packages
• A package is basically a collection of modules in a directory subtree
• Structures a module namespace by allowing dotted names
• Example:

- test_pkg/
 __init__.py
 foo.py
 bar.py
 baz/
 fun.py

• For packages that are to be executed as scripts, __main__.py can also be
added

8D. Koop, CSCI 503/490, Fall 2021

9

Example

D. Koop, CSCI 503/490, Fall 2021

Finding Packages
• Python Package Index (PyPI) is the standard repository (https://pypi.org) and

pip (pip installs packages) is the official python package installer
- Types of distribution: source (sdist) and wheels (binaries)
- Each package can specify dependencies
- Creating a PyPI package requires adding some metadata

• Anaconda is a package index, conda is a package manager
- conda is language-agnostic (not only Python)
- solves dependencies
- conda deals with non-Python dependencies
- has different channels: default, conda-forge (community-led)

10D. Koop, CSCI 503/490, Fall 2021

https://pypi.org
https://anaconda.org

Installing Packages
• pip install <package-name>

• conda install <package-name>

• In Jupyter use:
- %pip install <package-name>

- %conda install <package-name>

• Arguments can be multiple packages
• Be careful! Security exploits using package installation and dependencies

(e.g. Alex Birsan)

11D. Koop, CSCI 503/490, Fall 2021

https://medium.com/@alex.birsan/dependency-confusion-4a5d60fec610

Environments
• Both pip and conda support environments
- venv
- conda env

• Idea is that you can create different environments for different work
- environment for cs503
- environment for research
- environment for each project

12D. Koop, CSCI 503/490, Fall 2021

Assignment 4
• Due Today
• UDSA Food Price Data
• Reading & Writing Files
• Iterators
• Numeric Aggregation
• String Formatting
• CSCI 503 students compute and output two additional fields

13D. Koop, CSCI 503/490, Fall 2021

http://faculty.cs.niu.edu/~dakoop/cs503-2021fa/assignment4.html

Assignment 5
• Scripts, modules, packages
• Soon

14D. Koop, CSCI 503/490, Fall 2021

Arrays

What is the difference between an array and a list (or a tuple)?

15D. Koop, CSCI 503/490, Fall 2021

Arrays
• Usually a fixed size—lists are meant to change size
• Are mutable—tuples are not
• Store only one type of data—lists and tuples can store any combination
• Are faster to access and manipulate than lists or tuples
• Can be multidimensional:
- Can have list of lists or tuple of tuples but no guarantee on shape
- Multidimensional arrays are rectangles, cubes, etc.

16D. Koop, CSCI 503/490, Fall 2021

Why NumPy?
• Fast vectorized array operations for data munging and cleaning, subsetting

and filtering, transformation, and any other kinds of computations
• Common array algorithms like sorting, unique, and set operations
• Efficient descriptive statistics and aggregating/summarizing data
• Data alignment and relational data manipulations for merging and joining

together heterogeneous data sets
• Expressing conditional logic as array expressions instead of loops with if-
elif-else branches

• Group-wise data manipulations (aggregation, transformation, function
application).

17

[W. McKinney, Python for Data Analysis]
D. Koop, CSCI 503/490, Fall 2021

18

import numpy as np

D. Koop, CSCI 503/490, Fall 2021

Creating arrays
• data1 = [6, 7, 8, 0, 1]
arr1 = np.array(data1)

• data2 = [[1.5,2,3,4],[5,6,7,8]]
arr2 = np.array(data2)

• data3 = np.array([6, "abc", 3.57]) # !!! check !!!

• Can check the type of an array in dtype property
• Types:

- arr1.dtype # dtype('int64')

- arr3.dtype # dtype('<U21'), unicode plus # chars

19D. Koop, CSCI 503/490, Fall 2021

Types
• "But I thought Python wasn't stingy about types…"
• numpy aims for speed
• Able to do array arithmetic
• int16, int32, int64, float32, float64, bool, object
• Can specify type explicitly

- arr1_float = np.array(data1, dtype='float64')
• astype method allows you to convert between different types of arrays:

arr = np.array([1, 2, 3, 4, 5])
arr.dtype
float_arr = arr.astype(np.float64)

20D. Koop, CSCI 503/490, Fall 2021

In [36]: arr2.dtype
Out[36]: dtype('int32')

dtypes are a source of NumPy’s flexibility for interacting with data coming from other
systems. In most cases they provide a mapping directly onto an underlying disk or
memory representation, which makes it easy to read and write binary streams of data
to disk and also to connect to code written in a low-level language like C or Fortran.
The numerical dtypes are named the same way: a type name, like float or int, fol‐
lowed by a number indicating the number of bits per element. A standard double-
precision floating-point value (what’s used under the hood in Python’s float object)
takes up 8 bytes or 64 bits. Thus, this type is known in NumPy as float64. See
Table 4-2 for a full listing of NumPy’s supported data types.

Don’t worry about memorizing the NumPy dtypes, especially if
you’re a new user. It’s often only necessary to care about the general
kind of data you’re dealing with, whether floating point, complex,
integer, boolean, string, or general Python object. When you need
more control over how data are stored in memory and on disk,
especially large datasets, it is good to know that you have control
over the storage type.

Table 4-2. NumPy data types
Type Type code Description
int8, uint8 i1, u1 Signed and unsigned 8-bit (1 byte) integer types
int16, uint16 i2, u2 Signed and unsigned 16-bit integer types
int32, uint32 i4, u4 Signed and unsigned 32-bit integer types
int64, uint64 i8, u8 Signed and unsigned 64-bit integer types
float16 f2 Half-precision !oating point
float32 f4 or f Standard single-precision !oating point; compatible with C !oat
float64 f8 or d Standard double-precision !oating point; compatible with C double and

Python float object
float128 f16 or g Extended-precision !oating point
complex64,
complex128,
complex256

c8, c16,
c32

Complex numbers represented by two 32, 64, or 128 !oats, respectively

bool ? Boolean type storing True and False values
object O Python object type; a value can be any Python object
string_ S Fixed-length ASCII string type (1 byte per character); for example, to create a

string dtype with length 10, use 'S10'
unicode_ U Fixed-length Unicode type (number of bytes platform speci"c); same

speci"cation semantics as string_ (e.g., 'U10')

4.1 The NumPy ndarray: A Multidimensional Array Object | 91

numpy data types (dtypes)

21

[W. McKinney, Python for Data Analysis]
D. Koop, CSCI 503/490, Fall 2021

Array Shape
• Our normal way of checking the size of a collection is… len
• How does this work for arrays?
• arr1 = np.array([1,2,3,6,9])
len(arr1) # 5

• arr2 = np.array([[1.5,2,3,4],[5,6,7,8]])
len(arr2) # 2

• All dimension lengths → shape: arr2.shape # (2,4)
• Number of dimensions: arr2.ndim # 2
• Can also reshape an array:

- arr2.reshape(4,2)

- arr2.reshape(-1,2) # what happens here?

22D. Koop, CSCI 503/490, Fall 2021

Speed Benefits
• Compare random number generation in pure Python versus numpy
• Python:

- import random
%timeit rolls_list = [random.randrange(1,7)
 for i in range(0, 60_000)]

• With NumPy:
- %timeit rolls_array = np.random.randint(1, 7, 60_000)

• Significant speedup (80x+)

23D. Koop, CSCI 503/490, Fall 2021

Array Programming
• Lists:

- c = []
for i in range(len(a)):
 c.append(a[i] + b[i])

• How to improve this?

24D. Koop, CSCI 503/490, Fall 2021

Array Programming
• Lists:

- c = []
for i in range(len(a)):
 c.append(a[i] + b[i])

- c = [aa + bb for aa, bb in zip(a,b)]

• NumPy arrays:
- c = a + b

• More functional-style than imperative
• Internal iteration instead of external

25D. Koop, CSCI 503/490, Fall 2021

Operations
• a = np.array([1,2,3])
b = np.array([6,4,3])

• (Array, Array) Operations (Element-wise)
- Addition, Subtraction, Multiplication
- a + b # array([7, 6, 6])

• (Scalar, Array) Operations (Broadcasting):
- Addition, Subtraction, Multiplication, Division, Exponentiation
- a ** 2 # array([1, 4, 9])

- b + 3 # array([9, 7, 6])

26D. Koop, CSCI 503/490, Fall 2021

More on Array Creation
• Zeros: np.zeros(10)
• Ones: np.ones((4,5)) # shape
• Empty: np.empty((2,2))
• _like versions: pass an existing array and matches shape with specified

contents
• Range: np.arange(15) # constructs an array, not iterator!

27D. Koop, CSCI 503/490, Fall 2021

Indexing
• Same as with lists plus shorthand for 2D+

- arr1 = np.array([6, 7, 8, 0, 1])

- arr1[1]

- arr1[-1]

• What about two dimensions?
- arr2 = np.array([[1.5,2,3,4],[5,6,7,8]])

- arr[1][1]

- arr[1,1] # shorthand

28D. Koop, CSCI 503/490, Fall 2021

Figure 4-1. Indexing elements in a NumPy array

In multidimensional arrays, if you omit later indices, the returned object will be a
lower dimensional ndarray consisting of all the data along the higher dimensions. So
in the 2 × 2 × 3 array arr3d:

In [76]: arr3d = np.array([[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]])

In [77]: arr3d
Out[77]:
array([[[1, 2, 3],
 [4, 5, 6]],
 [[7, 8, 9],
 [10, 11, 12]]])

arr3d[0] is a 2 × 3 array:
In [78]: arr3d[0]
Out[78]:
array([[1, 2, 3],
 [4, 5, 6]])

Both scalar values and arrays can be assigned to arr3d[0]:
In [79]: old_values = arr3d[0].copy()

In [80]: arr3d[0] = 42

In [81]: arr3d
Out[81]:
array([[[42, 42, 42],
 [42, 42, 42]],
 [[7, 8, 9],
 [10, 11, 12]]])

In [82]: arr3d[0] = old_values

96 | Chapter 4: NumPy Basics: Arrays and Vectorized Computation

2D Indexing

29

[W. McKinney, Python for Data Analysis]
D. Koop, CSCI 503/490, Fall 2021

Slicing
• 1D: Similar to lists

- arr1 = np.array([6, 7, 8, 0, 1])

- arr1[2:5] # np.array([8,0,1]), sort of

• Can mutate original array:
- arr1[2:5] = 3 # supports assignment

- arr1 # the original array changed

• Slicing returns views (copy the array if original array shouldn't change)
- arr1[2:5] # a view

- arr1[2:5].copy() # a new array

30D. Koop, CSCI 503/490, Fall 2021

Slicing
• 2D+: comma separated indices as shorthand:

- arr2 = np.array([[1.5,2,3,4],[5,6,7,8]])

- a[1:3,1:3]

- a[1:3,:] # works like in single-dimensional lists

• Can combine index and slice in different dimensions
- a[1,:] # gives a row

- a[:,1] # gives a column

31D. Koop, CSCI 503/490, Fall 2021

2D Array Slicing

32

[W. McKinney, Python for Data Analysis]
D. Koop, CSCI 503/490, Fall 2021

How to obtain the blue slice
from array arr?

 [0.1913, 0.4544, 0.4519, 0.5535],
 [0.5994, 0.8174, -0.9297, -1.2564]])

Figure 4-2. Two-dimensional array slicing

Suppose each name corresponds to a row in the data array and we wanted to select all
the rows with corresponding name 'Bob'. Like arithmetic operations, comparisons
(such as ==) with arrays are also vectorized. Thus, comparing names with the string
'Bob' yields a boolean array:

In [87]: names == 'Bob'
Out[87]: array([True, False, False, True, False, False, False], dtype=bool)

This boolean array can be passed when indexing the array:

In [88]: data[names == 'Bob']
Out[88]:
array([[-0.048 , 0.5433, -0.2349, 1.2792],
 [2.1452, 0.8799, -0.0523, 0.0672]])

The boolean array must be of the same length as the axis it’s indexing. You can even
mix and match boolean arrays with slices or integers (or sequences of integers, more
on this later):

In [89]: data[names == 'Bob', 2:]
Out[89]:
array([[-0.2349, 1.2792],

86 | Chapter 4: NumPy Basics: Arrays and Vectorized Computation

2D Array Slicing

33

[W. McKinney, Python for Data Analysis]
D. Koop, CSCI 503/490, Fall 2021

How to obtain the blue slice
from array arr?

 [0.1913, 0.4544, 0.4519, 0.5535],
 [0.5994, 0.8174, -0.9297, -1.2564]])

Figure 4-2. Two-dimensional array slicing

Suppose each name corresponds to a row in the data array and we wanted to select all
the rows with corresponding name 'Bob'. Like arithmetic operations, comparisons
(such as ==) with arrays are also vectorized. Thus, comparing names with the string
'Bob' yields a boolean array:

In [87]: names == 'Bob'
Out[87]: array([True, False, False, True, False, False, False], dtype=bool)

This boolean array can be passed when indexing the array:

In [88]: data[names == 'Bob']
Out[88]:
array([[-0.048 , 0.5433, -0.2349, 1.2792],
 [2.1452, 0.8799, -0.0523, 0.0672]])

The boolean array must be of the same length as the axis it’s indexing. You can even
mix and match boolean arrays with slices or integers (or sequences of integers, more
on this later):

In [89]: data[names == 'Bob', 2:]
Out[89]:
array([[-0.2349, 1.2792],

86 | Chapter 4: NumPy Basics: Arrays and Vectorized Computation

arr[:2,1:]

