
Programming Principles in Python (CSCI 503/490)

Files

Dr. David Koop

(some slides adapted from Dr. Reva Freedman)

D. Koop, CSCI 503/490, Fall 2021

Functional Programming
• Programming without imperative statements like assignment
• In addition to comprehensions & iterators, have functions:
- map: iterable of n values to an iterable of n transformed values
- filter: iterable of n values to an iterable of m (m <= n) values

• Eliminates need for concrete looping constructs

2D. Koop, CSCI 503/490, Fall 2021

Lambda Functions
• def is_even(x):
 return (x % 2) == 0

• filter(is_even, range(10) # generator

• Lots of code to write a simple check
• Lambda functions allow inline function definition
• Usually used for "one-liners": a simple data transform/expression
• filter(lambda x: x % 2 == 0, range(10))

• Parameters follow lambda, no parentheses
• No return keyword as this is implicit in the syntax
• JavaScript has similar functionality (arrow functions): (d => d % 2 == 0)

3D. Koop, CSCI 503/490, Fall 2021

Strings
• Remember strings are sequences of characters
• Strings are collections so have len, in, and iteration

- s = "Huskies"
len(s); "usk" in s; [c for c in s if c == 's']

• Strings are sequences so have
- indexing and slicing: s[0], s[1:]
- concatenation and repetition: s + " at NIU"; s * 2

• Single or double quotes 'string1', "string2"
• Triple double-quotes: """A string over many lines"""
• Escaped characters: '\n' (newline) '\t' (tab)

4D. Koop, CSCI 503/490, Fall 2021

Unicode and ASCII
• Conceptual systems
• ASCII:
- old 7-bit system (only 128 characters)
- English-centric

• Unicode:
- modern system
- Can represent over 1 million characters from all languages + emoji 🎉
- Characters have hexadecimal representation: é = U+00E9 and

name (LATIN SMALL LETTER E WITH ACUTE)
- Python allows you to type "é" or represent via code "\u00e9"

5D. Koop, CSCI 503/490, Fall 2021

String Methods
• We can call methods on strings like we can with lists

- s = "Peter Piper picked a peck of pickled peppers"
s.count('p')

• Categories of Methods
- Finding and counting substrings
- Removing leading and trailing whitespace and strings
- Transforming text
- Checking string composition
- Splitting and joining strings
- Formatting

6D. Koop, CSCI 503/490, Fall 2021

Formatting
• s.ljust, s.rjust, s.zfill: justification/filling
• s.format: templating function
- Replace fields indicated by curly braces with corresponding values
- "My name is {} {}".format(first_name, last_name)

- "My name is {1} {0}".format(last_name, first_name)

- "My name is {first_name} {last_name}".format(
 first_name=name[0], last_name=name[1])

- Braces can contain number or name of keyword argument
- Whole format mini-language to control formatting

• f-strings: f"My name is {first_name} {last_name}"

7D. Koop, CSCI 503/490, Fall 2021

https://docs.python.org/3/library/string.html#format-specification-mini-language
https://docs.python.org/3/library/string.html#format-specification-mini-language

Raw Strings
• Raw strings prefix the starting delimiter with r
• Disallow escaped characters
• '\\n is the way you write a newline, \\\\ for \\.'

• r"\n is the way you write a newline, \\ for \."

• Useful for regular expressions

8D. Koop, CSCI 503/490, Fall 2021

Assignment 3
• Due Thursday
• US Senate Stock Trading Data
• Lots of iteration and dictionary access
• Also create new lists and dictionaries
• Last Part is CSCI 503 Only

• In the news!
- Outside Ethics Group Says 7 House Lawmakers Didn't Disclose Stock Trades

9D. Koop, CSCI 503/490, Fall 2021

http://faculty.cs.niu.edu/~dakoop/cs503-2021fa/assignment3.html
http://faculty.cs.niu.edu/~dakoop/cs503-2021fa/assignment3.html
https://www.npr.org/2021/09/22/1039287987/outside-ethics-group-says-7-house-lawmakers-didnt-disclose-stock-trades
https://www.npr.org/2021/09/22/1039287987/outside-ethics-group-says-7-house-lawmakers-didnt-disclose-stock-trades

Test 1
• Covers material through today's class
• Content aligns with recommended text, but we covered more in lectures
• Format:
- Multiple Choice
- Free Response (see web page for examples)

• Questions related to principles and concepts as well as Python specifically
(i.e. syntax)

10D. Koop, CSCI 503/490, Fall 2021

http://faculty.cs.niu.edu/~dakoop/cs503-2021fa/test1.html
http://faculty.cs.niu.edu/~dakoop/cs503-2021fa/test1.html

Regular Expressions
• AKA regex
• A syntax to better specify how to decompose strings
• Look for patterns rather than specific characters
• "31" in "The last day of December is 12/31/2016."

• May work for some questions but now suppose I have other lines like: "The
last day of September is 9/30/2016."

• …and I want to find dates that look like:
• {digits}/{digits}/{digits}

• Cannot search for every combination!
• \d+/\d+/\d+ # \d is a character class

11D. Koop, CSCI 503/490, Fall 2021

Metacharacters
• Need to have some syntax to indicate things like repeat or one-of-these or

this is optional.
• . ^ $ * + ? { } [] \ | ()

• []: define character class
• ^: complement (opposite)
• \: escape, but now escapes metacharacters and references classes
• *: repeat zero or more times
• +: repeat one or more times
• ?: zero or one time
• {m,n}: at least m and at most n

12D. Koop, CSCI 503/490, Fall 2021

Predefined Character Classes

13

[Deitel & Deitel]
D. Koop, CSCI 503/490, Fall 2021

Character
class Matches

\d Any digit (0–9).
\D Any character that is not a digit.
\s Any whitespace character (such as spaces, tabs and newlines).
\S Any character that is not a whitespace character.
\w Any word character (also called an alphanumeric character)
\W Any character that is not a word character.

Performing Matches

14D. Koop, CSCI 503/490, Fall 2021

Method/Attribute Purpose

match() Determine if the RE matches at the beginning of
the string.

search() Scan through a string, looking for any location
where this RE matches.

findall() Find all substrings where the RE matches, and
returns them as a list.

finditer() Find all substrings where the RE matches, and
returns them as an iterator.

https://docs.python.org/3/glossary.html#term-iterator

Regular Expressions in Python
• import re

• re.match(<pattern>, <str_to_check>)

- Returns None if no match, information about the match otherwise
- Starts at the beginning of the string

• re.search(<pattern>, <str_to_check>)

- Finds single match anywhere in the string
• re.findall(<pattern>, <str_to_check>)

- Finds all matches in the string, search only finds the first match
• Can pass in flags to alter methods: e.g. re.IGNORECASE

15D. Koop, CSCI 503/490, Fall 2021

Examples
• s0 = "No full dates here, just 02/15"
s1 = "02/14/2021 is a date"
s2 = "Another date is 12/25/2020"

• re.match(r'\d+/\d+/\d+',s1) # returns match object

• re.match(r'\d+/\d+/\d+',s0) # None

• re.match(r'\d+/\d+/\d+',s2) # None!

• re.search(r'\d+/\d+/\d+',s2) # returns 1 match object

• re.search(r'\d+/\d+/\d+',s3) # returns 1! match object

• re.findall(r'\d+/\d+/\d+',s3) # returns list of strings

• re.finditer(r'\d+/\d+/\d+',s3) # returns iterable of matches

16D. Koop, CSCI 503/490, Fall 2021

Grouping
• Parentheses capture a group that can be accessed or used later
• Access via groups() or group(n) where n is the number of the group, but

numbering starts at 1
• Note: group(0) is the full matched string
• for match in re.finditer(r'(\d+)/(\d+)/(\d+)',s3):
 print(match.groups())

• for match in re.finditer(r'(\d+)/(\d+)/(\d+)',s3):
 print('{2}-{0:02d}-{1:02d}'.format(
 *[int(x) for x in match.groups()]))

• * operator expands a list into individual elements

17D. Koop, CSCI 503/490, Fall 2021

Modifying Strings

18D. Koop, CSCI 503/490, Fall 2021

Method/Attribute Purpose

split() Split the string into a list, splitting it wherever the
RE matches

sub() Find all substrings where the RE matches, and
replace them with a different string

subn() Does the same thing as sub(), but returns the new
string and the number of replacements

Substitution
• Do substitution in the middle of a string:
• re.sub(r'(\d+)/(\d+)/(\d+)',r'\3-\1-\2',s3)

• All matches are substituted
• First argument is the regular expression to match
• Second argument is the substitution
- \1, \2, … match up to the captured groups in the first argument

• Third argument is the string to perform substitution on
• Can also use a function:
• to_date = lambda m:
f'{m.group(3)}-{int(m.group(1)):02d}-{int(m.group(2)):02d}'
re.sub(r'(\d+)/(\d+)/(\d+)', to_date, s3)

19D. Koop, CSCI 503/490, Fall 2021

20

Files

D. Koop, CSCI 503/490, Fall 2021

Files
• A file is a sequence of data stored on disk.
• Python uses the standard Unix newline character (\n) to mark line breaks.
- On Windows, end of line is marked by \r\n, i.e., carriage return + newline.
- On old Macs, it was carriage return \r only.
- Python converts these to \n when reading.

21D. Koop, CSCI 503/490, Fall 2021

Opening a File
• Opening associates a file on disk with an object in memory (file object or file

handle).
• We access the file via the file object.
• <filevar> = open(<name>, <mode>)

• Mode 'r' = read or 'w' = write, 'a' = append
• read is default
• Also add 'b' to indicate the file should be opened in binary mode: 'rb','wb'

22D. Koop, CSCI 503/490, Fall 2021

Standard File Objects
• When Python begins, it associates three standard file objects:

- sys.stdin: for input
- sys.stdout: for output
- sys.stderr: for errors

• In the notebook
- sys.stdin isn't really used, get_input can be used if necessary
- sys.stdout is the output shown after the code
- sys.stderr is shown with a red background

23D. Koop, CSCI 503/490, Fall 2021

Files and Jupyter
• You can double-click a file to see its contents (and edit it manually)
• To see one as text, may need to right-click
• Shell commands also help show files in the notebook
• The ! character indicates a shell command is being called
• These will work for Linux and macos but not necessarily for Windows
• !cat <fname>: print the entire contents of <fname>
• !head -n <num> <fname>: print the first <num> lines of <fname>
• !tail -n <num> <fname>: print the last <num> lines of <fname>

24D. Koop, CSCI 503/490, Fall 2021

Reading Files
• Use the open() method to open a file for reading

- f = open('huck-finn.txt')

• Usually, add an 'r' as the second parameter to indicate read (default)
• Can iterate through the file (think of the file as a collection of lines):

- f = open('huck-finn.txt', 'r')
for line in f:
 if 'Huckleberry' in line:
 print(line.strip())

• Using line.strip() because the read includes the newline, and print
writes a newline so we would have double-spaced text

• Closing the file: f.close()

25D. Koop, CSCI 503/490, Fall 2021

Remember Encoding?
• Unicode, ASCII and others
• all_lines = open('huck-finn.txt').readlines()
all_lines[0] # '\ufeff\n'

• \ufeff is the UTF Byte-Order-Mark (BOM)
• Optional for UTF-8, but if added, need to read it
• a = open('huck-finn.txt', encoding='utf-8-sig').readlines()
a[0] # '\n'

• No need to specify UTF-8 (or ascii since it is a subset)
• Other possible encodings:
- cp1252, utf-16, iso-8859-1

26D. Koop, CSCI 503/490, Fall 2021

Other Methods for Reading Files
• read(): read the entire file
• read(<num>): read <num> characters (bytes)

- open('huck-finn.txt', encoding='utf-8-sig').read(100)

• readlines(): read the entire file as a list of lines
- lines = open('huck-finn.txt', encoding='utf-8-sig').readlines()

27D. Koop, CSCI 503/490, Fall 2021

Reading a Text File
• Try to read a file at most once
• f = open('huck-finn.txt', 'r')
for i, line in enumerate(f):
 if 'Huckleberry' in line:
 print(line.strip())
for i, line in enumerate(f):
 if "George" in line:
 print(line.strip())

• Can't iterate twice!
• Best: do both checks when reading the file once
• Otherwise: either reopen the file or seek to beginning (f.seek(0))

28D. Koop, CSCI 503/490, Fall 2021

Parsing Files
• Dealing with different formats, determining more meaningful data from files
• txt: text file
• csv: comma-separated values
• json: JavaScript object notation
• Jupyter also has viewers for these formats
• Look to use libraries to help possible

- import json

- import csv

- import pandas

• Python also has pickle, but not used much anymore

29D. Koop, CSCI 503/490, Fall 2021

Comma-separated values (CSV) Format
• Comma is a field separator, newlines denote records

- a,b,c,d,message
1,2,3,4,hello
5,6,7,8,world
9,10,11,12,foo

• May have a header (a,b,c,d,message), but not required
• No type information: we do not know what the columns are (numbers,

strings, floating point, etc.)
- Default: just keep everything as a string
- Type inference: Figure out the type to make each column based on values

• What about commas in a value? → double quotes

30D. Koop, CSCI 503/490, Fall 2021

Python csv module
• Help reading csv files using the csv module

- import csv
with open('persons_of_concern.csv', 'r') as f:
 for i in range(3): # skip first three lines
 next(f)
 reader = csv.reader(f)
 records = [r for r in reader] # r is a list

• or
- import csv
with open('persons_of_concern.csv', 'r') as f:
 for i in range(3): # skip first three lines
 next(f)
 reader = csv.DictReader(f)
 records = [r for r in reader] # r is a dict

31D. Koop, CSCI 503/490, Fall 2021

