Floating point limits IEEE 754 - high bit sign bit, 8 bit biased exponent, 23 bit signficand.
Maximum absolute number size - 32 binary IEEE representation.
0 1111 1110 1111 1111 1111 1111 1111 111
Remember all 1s in exponent is special flag
Exponent
8 bit biased exponent 2^(8-1)-1 = 127 bias
1111 1110 = 254
b
254 - 127 = 127 2^127
Signficand
1111 1111 1111 1111 1111 111 = 23 bit mantissa
1.1111 1111 1111 1111 1111 111 = with significant bit.
|
Minimum normalized number size
32 binary representation.
0 0000 0001 0000 0000 0000 0000 0000 000
Remember all 0s in exponent is special flag
Exponent
8 bit biased exponent 2^(8-1)-1 = 127 bias
0000 0001 = 1
1 - 127 = -126 2^-126
Signficand
23 bit 0000 0000 0000 0000 0000 000
(with implied bit in integer location)
1.0000 0000 0000 0000 0000 000 * 2^-126
Minimum normalized size is 2^-126
|
Minimum denormalized number size
32 binary representation.
0 0000 0000 0000 0000 0000 0000 0000 001
All 0s in exponent and a non-zero signficand flag a denormalized value.
Exponent
Assume the normalized smallest exponent. 1 - 127 = -126 2^-126
0.0000 0000 0000 0000 0000 001
1.0000 0000 0000 0000 0000 000 =1 * 2^-23
Minimum normalized size is 1 * 2^-23 * 1 * 2^-126 = 1 * 2^-149
|