.0775625  sign 1, exponent 9, significand 4

A.  No integer portion of number.

B. Convert decimal fraction portion.
Remember, we can only store 4 significant digits and the most significant
digit is hidden, so count at most 5 past 1st significant 1 (for rounding
purposes).

    0.775625
    1.551250  Most significant digit
    1.10250   1
    0.205     2
    0.410     3
    0.82      4
    1.64      5
    1.28
    0.56      0.110000
   
        
C. Adjust the binary value to scientific style notation.
  
   1.1000 x 2 ^-1

D. Calculate the bias for the exponent

  2^(9-1)-1 = 2^8-1 = 256-1 = 255

E. Add bias to exponent and covert to binary

   255 + -1 = 254

   254
   127  0
    63  1
    31  1
    15  1

     7  1
     3  1
     1  1
     0  1    0 1111 1110

F.  
Sign positive so sign bit 0

Biased exponent      0 1111 1101

Find significand

  Most significant bit 1. not stored

  And float can hold only 10 significant digits, so we store only the most 
  significant portion.

  1.1000 
  ^ ^^^^
  h  4 digits
  i
  d
  d
  e
  n

  0     0 1111 1110     1000
  ^
  |       biased
  sign    exponent      significand