.0775625 sign 1, exponent 9, significand 4
A. No integer portion of number.
B. Convert decimal fraction portion.
Remember, we can only store 4 significant digits and the most significant
digit is hidden, so count at most 5 past 1st significant 1 (for rounding
purposes).
0.775625
1.551250 Most significant digit
1.10250 1
0.205 2
0.410 3
0.82 4
1.64 5
1.28
0.56 0.110000
C. Adjust the binary value to scientific style notation.
1.1000 x 2 ^-1
D. Calculate the bias for the exponent
2^(9-1)-1 = 2^8-1 = 256-1 = 255
E. Add bias to exponent and covert to binary
255 + -1 = 254
254
127 0
63 1
31 1
15 1
7 1
3 1
1 1
0 1 0 1111 1110
F.
Sign positive so sign bit 0
Biased exponent 0 1111 1101
Find significand
Most significant bit 1. not stored
And float can hold only 10 significant digits, so we store only the most
significant portion.
1.1000
^ ^^^^
h 4 digits
i
d
d
e
n
0 0 1111 1110 1000
^
| biased
sign exponent significand