.0775625 sign 1, exponent 9, significand 4 A. No integer portion of number. B. Convert decimal fraction portion. Remember, we can only store 4 significant digits and the most significant digit is hidden, so count at most 5 past 1st significant 1 (for rounding purposes). 0.775625 1.551250 Most significant digit 1.10250 1 0.205 2 0.410 3 0.82 4 1.64 5 1.28 0.56 0.110000 C. Adjust the binary value to scientific style notation. 1.1000 x 2 ^-1 D. Calculate the bias for the exponent 2^(9-1)-1 = 2^8-1 = 256-1 = 255 E. Add bias to exponent and covert to binary 255 + -1 = 254 254 127 0 63 1 31 1 15 1 7 1 3 1 1 1 0 1 0 1111 1110 F. Sign positive so sign bit 0 Biased exponent 0 1111 1101 Find significand Most significant bit 1. not stored And float can hold only 10 significant digits, so we store only the most significant portion. 1.1000 ^ ^^^^ h 4 digits i d d e n 0 0 1111 1110 1000 ^ | biased sign exponent significand