In the following table ! preceeding an input specifies NOT
Laws Identity Null Itempotent Inverse Commutative Associative Distributive De Morgan's Cancelation |
AND 1*A=A 0*A=0 A*A=A A*!A=0 A*B=B*A (A*B)*C=A*(B*C) A+B*C=(A+B)*(A+C) !(A*B)=!A+!B !!A=A |
OR 0+A=A 1+A=1 A+A=A A+!A=1 A+B=B+A (A+B)+C=A+(B+C) A*(B+C)=A*B+A*C !A*!B=!(A+B) |
General rule: When given a combination of ANDs, ORs and NOTs,
Statements inside parens resolved before those outside.
ANDS have higher precedence (are resolved first)
then ORs.
1. !(!A*!B+B) | 2. !(A*!B+B) | 3. (A+B)*(A+C)*(!B+!C) | |||
4. C*(A+B+!(!C+!D))*D | 5. !A+A*!B |
Part B. Draw the gate representation for the initial boolean statement for each of the problems in A.
Part C. Give the truth tables for both the initial boolean statement and simplified staement in Part A.