
CS241 Class Notes

rev 2

John Winans & Eric Bieche

Spring 1999

Contents

1 UNIX Command Summary 2

1.1 Overview . 2

1.1.1 Additional Documentation . 2

1.2 Online Unix Reference Manual . 2

1.3 Compiling Your Programs . 3

1.3.1 gcc(1) and cc(1) . 3

1.3.2 hexdump(1) . 4

1.3.3 Core Files . 4

1.4 Changing Your Unix Password . 4

1.5 ps(1) . 5

1.6 quota(1) . 5

1.7 File Management Commands . 5

1.7.1 ls(1) . 5

1.7.2 mkdir(1) . 5

1.7.3 cd(1) . 6

1.7.4 rm(1) . 6

1.7.5 rmdir(1) . 6

1.7.6 mv(1) . 6

1.7.7 cp(1) . 7

1.7.8 cat(1) . 7

1.7.9 less(1) is more(1) . 8

1.7.10 pwd(1) . 8

1.7.11 chmod(1) . 8

1.7.12 diff(1) . 9

1.7.13 I/O Redirection . 10

1.8 Text Editors . 11

1.8.1 vi(1) . 11

1.8.2 pico . 14

1.8.3 Other Editors . 14

Copyright c© 2014, 2015 John Winans. All Rights Reserved

~/NIU/courses/631/2015-sp-1/notes/unix.tex
jwinans@niu.edu 2015-01-14 20:44:08 -0600 v1.0-247-g9b87820 (-- DRAFT --)

Page 1 of 19

CONTENTS CONTENTS

1.9 Termination and Output . 14

1.9.1 Job Control . 14

1.9.2 kill(1) . 15

2 Designing Debugging Into Your Programs 16

3 Using the gcc(1) Debugger gdb(1) 18

Copyright c© 2014, 2015 John Winans. All Rights Reserved

~/NIU/courses/631/2015-sp-1/notes/unix.tex
jwinans@niu.edu 2015-01-14 20:44:08 -0600 v1.0-247-g9b87820 (-- DRAFT --)

Page 2 of 19

Chapter 1

UNIX Command Summary

1.1 Overview

Just a few things that we all need to know before we start.

• Unix is case sensitive. . . PROG1.C is not the same as prog1.c

• . is the name of the current directory

• .. is that name of the current parent directory

• $HOME is a variable that contains the full name of your home directory. It contains something
like /usr2/z912345 which includes your login-ID (aka. your z9 number)

• files that begin with a ‘.’ are hidden files (see ls(1))

• the default command-line prompt on mp is %

1.1.1 Additional Documentation

Some other sources that you’ll want to check are:

• Unix in a Nutshell, Daniel Gilly an O’reily book.

• The online Unix reference manual (see below)

1.2 Online Unix Reference Manual

The online Unix reference manual is read by using the man(1) command. Most texts that reference
Unix commands include the Unix manual page section as a reference. For example, the reference
to man(1) in this sentence indicated that man is a command that is documented in section 1 of the
online Unix reference manual. This on manual system displays what are commonly known as “man
pages”.

Like everything in life, most of the man-pages can be overwelming the first time you experience
them. The best advice I can give you about them is that you skim them over when help is needed
in order to try to figure out what you need. If they do not help, look elsewhere. . . but return to the
man-page afterward in order to try to figure out how that information was presented in the online

Copyright c© 2014, 2015 John Winans. All Rights Reserved

~/NIU/courses/631/2015-sp-1/notes/unix.tex
jwinans@niu.edu 2015-01-14 20:44:08 -0600 v1.0-247-g9b87820 (-- DRAFT --)

Page 3 of 19

CHAPTER 1. UNIX COMMAND SUMMARY 1.3. COMPILING YOUR PROGRAMS

manual and how you could have determined the answer without the outside help. After a while, you
will understand the philosophy of the man(1) system and how to use it for fast answers to questions.

Useful options to the man(1) command are -s section and -k keyword

• -s section

Used to specify the section number of the desired man-page. The section number is optional,
and often not necessary. But if a command-line program has the same name as a C function,
or something else that may be in the on-line manual, you may get a man-page for the term
you specify, but from the wrong section. . . and, thus, the wrong thing. For example, there is
a write(1) and a write(2) in the online manual. If you leave out the section number, you will
get the page for write(1) which is a command used to send instant-messages to other users on
the system (write(2) is the doc for a C function that can be used to write data into a file).

In order to prevent confusion about these things, the man-pages include a set of notes at the
end that include references to other man-pages that may be more suitable to what you are
looking for. Additionally, the online manual is sectioned based on the types of documents of
interest to programmers. Commonly accessed sections are:

– section 1 User Commands

– section 2 system calls

– section 3 C library functions

– section 4 Devices and network interfaces

– section 5 File formats

The sections of interest to C programmers are section 2, 3 and 3c. Examples of how to use
the online manual include:

– man ls

– man -s1 ls

– man -s3 strstr

– man -s2 write

– man -s3 printf

• -k keyword

This option is used to request a keyword search. It will result in giving you a list of pages
including the specified keyword in in their name or in their synopsis. For example:

– man -k printf

– man -k strncmp

1.3 Compiling Your Programs

1.3.1 gcc(1) and cc(1)

You will use the gnu compiler gcc(1) in your class so I will stick with gcc for the examples. Note
that there is another C compiler named cc(1). The gcc(1) compiler can be more noisy than cc(1) in
that it generates more warnings. . . which are very useful while learning how to program.

Some useful options to gcc(1) are:

• -ansi generates error messages when you violate ANSI standards

Copyright c© 2014, 2015 John Winans. All Rights Reserved

~/NIU/courses/631/2015-sp-1/notes/unix.tex
jwinans@niu.edu 2015-01-14 20:44:08 -0600 v1.0-247-g9b87820 (-- DRAFT --)

Page 4 of 19

CHAPTER 1. UNIX COMMAND SUMMARY 1.4. CHANGING YOUR UNIX PASSWORD

• -lm link in the math library (use this if you put #include<math.h> in your program)

• -o the default executable program name is a.out the -o allows you to name your own prog
name

• -g generate special code so that the debugger can present details about source code in the
debugger output

• -Wall generates warnings about everyting that is even slightly suspicious about your source
code

• -pedantic considers some of the warnings generated by -ansi as errors

It is recommended that students always use -ansi -Wall -pedantic when working on their pro-
grams. Any instructor-supplied Makefile will include these flags.

Some examples:

• gcc -ansi -Wall -pedantic -lm -o prog1 prog1.c

• gcc -ansi -Wall -pedantic prog3.c

• gcc -o prog2 prog2.c

1.3.2 hexdump(1)

This will display a file in a hexadecimal dump format. A useful option is:

• -C output both hex and ASCII

Some examples:

• hexdump -C prog1.c

• hexdump -C output.datafile

1.3.3 Core Files

A core file is automatically produced if your program crashes. These can be quite large, I’ve seen
one that was 1.5 MB. They can be used by the gdb(1) debugger to tell you what went wrong. If
you’re not using a debugger, you’ll want to rm(1) them as they will count toward your disk usage
quota.

If you never want to use the debugger, consider putting the following in your .bashrc file:

ulimit -c 0

This limit command will prevent them from being automatically generated when programs crash.

1.4 Changing Your Unix Password

You may change your Unix password at any time by logging into mp.cs.niu.edu and using passwd(1).
An example password change scenairo is shown below:

Copyright c© 2014, 2015 John Winans. All Rights Reserved

~/NIU/courses/631/2015-sp-1/notes/unix.tex
jwinans@niu.edu 2015-01-14 20:44:08 -0600 v1.0-247-g9b87820 (-- DRAFT --)

Page 5 of 19

CHAPTER 1. UNIX COMMAND SUMMARY 1.5. PS(1)

% passwd <- I type the command
passwd: Changing password for winans <- the program comments
(current) UNIX password: <- I enter my new password
New password: <- and again to verify

1.5 ps(1)

To see what is happening on a Unix machine, you may use ps(1) to get a listing of the programs
(called processes) that are currently executing. To get a complete listing, consider running ps ax

1.6 quota(1)

At NIU, each student may use only a limited amount of disk space. In order to check your current
usage and limit, use quota(1). Most of the time you will want to use: quota -v

1.7 File Management Commands

1.7.1 ls(1)

To see what files are in a given directory, use ls(1). You can used several options to give you different
types of information.

Some common options include:

• -a wil list all the hidden files as well as the normal ones

• -l gives a longer listing with date, time, and permissions

• -R will recursively list all subdirectories and their files

• -d will list only the directories

• -F will put a special character behind each filename to indicate the type of the file. These are:

– / for a dir

– * for executable files

– @ for symbolic links

1.7.2 mkdir(1)

To create a new directory, use mkdir(1). A common option is -p which will create intervening parent
directories if they don’t already exist.

Some examples:

• mkdir Assn1

• mkdir progs/assn1

• mkdir -p this/is/a/test

Copyright c© 2014, 2015 John Winans. All Rights Reserved

~/NIU/courses/631/2015-sp-1/notes/unix.tex
jwinans@niu.edu 2015-01-14 20:44:08 -0600 v1.0-247-g9b87820 (-- DRAFT --)

Page 6 of 19

CHAPTER 1. UNIX COMMAND SUMMARY 1.7. FILE MANAGEMENT COMMANDS

1.7.3 cd(1)

Changes the current working directory.

Some examples:

• cd Changes the current working directory to the user’s home directory.

• cd .. Changes the current working directory to the parent directory note the space between
the d and the first period.

• cd 241 Changes the current working directory to a subdirectory named 241 note that the 241
subdirectory must already exist for this to work.

1.7.4 rm(1)

You delete unwanted (and if you’re not careful. . . wanted) files with rm(1). Warning: once you
have deleted a file it is gone for good! There is no “undelete” like in DOS.

A common option for beginners is:

• -i rm(1) will ask you to answer ‘y’ or ‘n’ to make sure you want to delete the file

An example:

% rm -i Primes.ps
rm: remove Primes.ps (yes/no)?

The -i option is mostl useful when you do things like rm -i *c which would delete all files ending
with the letter ’c’.

1.7.5 rmdir(1)

Without special options, the rm(1) command can only delete files. To removes directories use
rmdir(1). You can only use rmdir(1) on empty directories.

An example:

rmdir -p $HOME/241/assignments/a4/prog1.c

1.7.6 mv(1)

In Unix, you do not “rename” a file or directory, you “move” it. Use mv(1) to move file. You can
move a file or directoy to a new name in the same directory or into a different directory.

Some examples:

• To rename a file in the same directory

mv prog1.c program1.c

• To move a file into another directory

mv prog1.c ../anotherdir/
mv prog1.c ../diffdir/diffname.c

Copyright c© 2014, 2015 John Winans. All Rights Reserved

~/NIU/courses/631/2015-sp-1/notes/unix.tex
jwinans@niu.edu 2015-01-14 20:44:08 -0600 v1.0-247-g9b87820 (-- DRAFT --)

Page 7 of 19

CHAPTER 1. UNIX COMMAND SUMMARY 1.7. FILE MANAGEMENT COMMANDS

• To move a directory into another directory

mv subdir ..
mv subdir ../diffdir/

1.7.7 cp(1)

To make a copy of a file, use cp(1).

Useful options:

• -r will recursively copy a directory, its files, and its subdirectories to a destination directory,
duplicating the tree structure.

• -i will prompt for confirmation before overwriting an existing file

Some examples:

• To copy two files to their parent directory

cp prog1.c prog1.h ..

• To copy a file to the testprogs directory in your home directory with a confirmation

cp -i prog4.c $HOME/testprogs

1.7.8 cat(1)

To list a file’s contents on the screen (normally called standard-out or stdout) use cat(1)—the
concatenate command. This may be used to list one or more files.

Useful options:

• -n will print the file with line numbers

• -v Displays any control characters using carat (^) notation

• -e prints a $ at the end of a line (useful to detect unwanted spaces at the ends of lines)

• -t will print ^I for each tab (useful to see what the instructor wants when you must generate
exact output)

Some examples:

• To display a file on the screen with all the above options turned on

cat -nvet prog4.key

• To combine two (or more) files into a big one

cat part1file part2file > bigfile

• To append prog10.c to the end of an existing file named programs

cat prog10.c >> programs

Copyright c© 2014, 2015 John Winans. All Rights Reserved

~/NIU/courses/631/2015-sp-1/notes/unix.tex
jwinans@niu.edu 2015-01-14 20:44:08 -0600 v1.0-247-g9b87820 (-- DRAFT --)

Page 8 of 19

CHAPTER 1. UNIX COMMAND SUMMARY 1.7. FILE MANAGEMENT COMMANDS

1.7.9 less(1) is more(1)

less(1) and more(1) do the same thing. They list a file on standard-out while pausing at each
screenfull of text. less(1) is a nicer lister than more(1). These commands are often used with a pipe
“|”. When the command runs, you may:

• hit the enter key to advance one line

• hit the space bar to advance a page

• hit q to exit

• when using less(1), press the j or k keys to scroll up and down one line at a time and b to
scroll up a page at a time

Some examples:

• cat -nvet prog7.c | more

• ls -alFR | less

• ps -e | more

• more prog3.c

1.7.10 pwd(1)

To print the name of the current working directory use pwd(1)

1.7.11 chmod(1)

To change the access mode of the specified file(s) use chmod(1). This is a very important topic!!
If you’re not careful, anyone can look at or even modify your work or email. If a classmate takes
advantage of your lack of action in this area, and it is caught with a copy of your work, you will both
be in a lot of trouble since it is impossible to tell who cheated on whom. So pay special attention to
this section. If you were to ls -l in your assignment 1 directory you will get the following output:

% cd cs241/a1
% ls -l
total 14
-rw-r--r-- 1 z912345 csci 154 Jan 6 14:55 Makefile
-rw------- 1 z912345 csci 5116 Dec 18 13:56 Primes.tex
-rw------- 1 z912345 csci 921 Dec 18 13:56 primes.c

Lets look at the first ten characters.
Position(s) Meaning

1 Either a regular file (-) or a directory (d)
2-4 The permissions for the owner (r) read (w) write (x) execute
5-7 The permissions for the group rwx is the same
8-10 The permissions for other [or world] rwx is the same

Now for a little binary:

000 = 0 001 = 1 010 = 2 011 = 3
100 = 4 101 = 5 110 = 6 111 = 7

Copyright c© 2014, 2015 John Winans. All Rights Reserved

~/NIU/courses/631/2015-sp-1/notes/unix.tex
jwinans@niu.edu 2015-01-14 20:44:08 -0600 v1.0-247-g9b87820 (-- DRAFT --)

Page 9 of 19

CHAPTER 1. UNIX COMMAND SUMMARY 1.7. FILE MANAGEMENT COMMANDS

Think of the 1’s as on and the 0’s as off. Now break up the characters 2-10 into three groups of three
of (r)ead, (w)rite and e(x)ecute permissions for your files or directories. For example, if you want to
have read, write, and execute permissions for yourself and only execute permissions for group and
others you would want the following:

-rwx--x--x
111001001

If we break the bits into groups of three, that gives us 111, 001, and 001 (in binary) and 7, 1, and 1
in octal.

So, to tie it all up:

• chmod 711 prog1.c will perform the above example

• chmod 700 prog2.c will only allow access to you, the owner

• chmod 644 public.letter will give you read and write and the group and others will get
only read access

Note that you need not worry about any of this if you do a chmod 700 on your home directory.
This is because setting the permissions on your home directory such that only you can access and
minipulate it will prevent anyone else from looking at it, listing the files in it or anything else to it
or its contents.

1.7.12 diff(1)

Use diff(1) to see if two files are identical and to summarize any differences.

You might be asked to have output that exactly matches the instructor’s output. They might refer
to this as a “clean diff” because, if the two files are exactly alike, there will be no differences listed
and prompt will immediately reappear. If they are not identical (even characters you can’t see such
as spaces and tabs count) then you will get a message saying as such (see cat(1) to help you tell).
The lines that are different will appear with a < with the text from the first file and a > with text
that differs in the second file.

For example, if you had the following data saved in file fn1:

xxx
yyy
zzz
The cat and the dog slept.
a
b
c

and the following saved in file fn2:

xxx
yyy
zzz
the Cat and the dog slept.
a
b
zdfgsdfgsdfg

Copyright c© 2014, 2015 John Winans. All Rights Reserved

~/NIU/courses/631/2015-sp-1/notes/unix.tex
jwinans@niu.edu 2015-01-14 20:44:08 -0600 v1.0-247-g9b87820 (-- DRAFT --)

Page 10 of 19

CHAPTER 1. UNIX COMMAND SUMMARY 1.7. FILE MANAGEMENT COMMANDS

The command diff fn1 fn2 would result in the following output:

4c4
< The cat and the dog slept.

> the Cat and the dog slept.
7c7
< c

> zdfgsdfgsdfg

As you can see, there were two lines that differed in the files and they are on lines 4 and 7.

1.7.13 I/O Redirection

I do not doubt that you will be doing some redirection for some of your programs. Redirection
can be from standard input, standard output and standard error. In this part we will also look at
appending to files. Note that the redirection of I/O is documented in csh(1) because it is performed
by the Unix command line shell.

Sometimes you will be given a data file to test your program. You use it by running your program
(with its command line options) and then using the less-than symbol ‘<’ followed by a filename that
contains the data to send to the running program. This prevents you from having to type it on the
keyboard each time you run your program.

To redirect the data in the file named data1 into prog1

prog1 < data1

Sometimes, rather than printing on the screen, you will want to save your output in a file for later
use. To do this, you redirect standard output to a file using the greater-than symbol ‘>’.

The operating system will automatically create the file for you if it does not already exist. Caution:
if the specified output file already exists doing this command will erase the contents of the file and
fill it with the new output.

To save the output of prog2 into a file called out1

prog2 > out1

To append data to the end of a file you would do the following:

prog2 >> $HOME/241/out

You may also redirect the standard output and the standard error to a file. (You may be asking
what is standard error? It’s a seperate output stream that is used, by convention, by programs
when they are printing error messages). One very handy use is to redirect the errors you get from
the c compiler to a file. Then you can print it out. This will prevent you from wasteing the time of
writing it down in the event that you wish to take it with you to study elsewhere.

cc prog1.c 2> prog1.err

If you want to append to the end of the output file, you would again use a double-greater-than
symbol like this:

Copyright c© 2014, 2015 John Winans. All Rights Reserved

~/NIU/courses/631/2015-sp-1/notes/unix.tex
jwinans@niu.edu 2015-01-14 20:44:08 -0600 v1.0-247-g9b87820 (-- DRAFT --)

Page 11 of 19

CHAPTER 1. UNIX COMMAND SUMMARY 1.8. TEXT EDITORS

cc prog1.c &> prog1.err

Rather than redirecting the output of a command into a file, you might want to redirect into the
input of another program. To do this, you use the pipe symbol. For example, if you want to sort
the output from the command xyzzy you would pipe it to sort(1) like this:

xyzzy -l | sort

Note that the standard input for the xyzzy -l is not altered and will be the keyboard. The standard
output of the sort is also not altered and will print to the screen.

You can also mix redirection. For example, if you want your prog to take data from a file and put
the output into another file you do the following:

prog6 < datafile > output

Or you might even want to do something like this:

prog6 < datafile | sort > output

1.8 Text Editors

When you write your programs you have many editor options. The most popular Unix text editors
are vi(1), pico(1), and emacs(1). If you are interested in using emacs(1) I sugest purchasing an
O’Reilly book and budgeting some time to learn it. It is very powerful, but it requires a significant
understanding of its workings in order to use. vi(1) and pico(1) are more suitable for new Unix
users.

1.8.1 vi(1)

This editor is midway between pico(1) and emacs(1). Once you get the hang of it you can edit more
code per-keystroke than you can with pico. If you commit 2-4 hours to just learning how to use it,
you will probably save yourself twice that time in just typing over the course of the semester. Of
course, if you try to use it without taking the time to learn it, you will probably loose 50+ hours
work over the course of the semester.

To use vi(1) to edit a file named primes.c, you run it at the command line like this:

vi primes.c

And vi(1) will create the file if it does not exist and then allow you to edit its contents.

vi(1) uses a dual-mode operation. At any point in time, you are either in command mode or insert
mode. When you first start up, you are in command mode.

Whilst in command mode, you may edit or save your file. To save your file, you type :w and press
return. And you may exit the editor with :q. To edit your file, you need to be able to move the
cursor about and insert and delete text.

To move the cursor around, you may use the arrow keys, or the following keys when in command
mode:

• j move down one line

• k move up one line

Copyright c© 2014, 2015 John Winans. All Rights Reserved

~/NIU/courses/631/2015-sp-1/notes/unix.tex
jwinans@niu.edu 2015-01-14 20:44:08 -0600 v1.0-247-g9b87820 (-- DRAFT --)

Page 12 of 19

CHAPTER 1. UNIX COMMAND SUMMARY 1.8. TEXT EDITORS

• h move to the left one character

• l move to the right one character

• b move back one word delimited by punctuation

• B move back one word delimited by whitespace

• w move to the right one word delimited by punctuation

• W move to the right one word delimited by whitespace

• H move to the top of the screen

• L move to the bottom of the screen

• M move to the middle of the screen

• G move to the end of the file

• 1G move to the first line in the file

• 123G move to line 123 of the file

• 0 (the number zero) move to the begining of the current line

• $ move to the end of the current line

• ^Y leave the cursor where it is, but scroll the screen up one line

• ^E leave the cursor where it is, but scroll the screen down one line

• ^U scroll the screen up 1/2 a screen-full

• ^D scroll the screen down 1/2 a screen-full

• ^B scroll the screen up/back a whole screen-full

• ^F scroll the screen down/forward a whole screen-full

• ^G tells you where you are and about the file you are editing

• % if the cursor is on a ‘(’, ‘)’, ‘{’, or ‘}’, the cursor will be moved to the matching element (in-
cludes smart matching so that you can properly navigate things such as {{{(sadf)(((sadf)sdf)asdf)}{()(())}}}
This is extreemly useful when fixing the nasty “mismatched ‘{’ ” compiler errors.

Once you get to where you are going, you may enter insert mode and start typing new text by
pressing the i key. When in insert mode, anything you type will go into the file. To get out of insert
mode, press the esc key. The following list shows all the ways to get yourself into insert mode:

• a move the cursor to the right one character and enter insert move

• A move the cursor to the end of the line and enter insert move

• o open a new line below the current position and enter insert mode

• O open a new line above the current position and enter insert mode

• I move the cursor to the begining of the current line and enter insert mode

• cw delete the text from the current cursor position to the end of the word and enter insert
mode (change word)

Copyright c© 2014, 2015 John Winans. All Rights Reserved

~/NIU/courses/631/2015-sp-1/notes/unix.tex
jwinans@niu.edu 2015-01-14 20:44:08 -0600 v1.0-247-g9b87820 (-- DRAFT --)

Page 13 of 19

CHAPTER 1. UNIX COMMAND SUMMARY 1.8. TEXT EDITORS

• c$ delete the text from the current cursor position to the end of the line and enter insert mode
(change change to end)

If you did something you do not like, you may enter command mode and press u to undo it. If you
do not like what you have undone, press u again and undo your undo. Note that there is only one
level of undo! You can not undo more than one thing. If you find that you have gotten into vi(1)
and done more damage than good to your file, you may abort your editing session by getting into
command mode and typing :q! to discard all unsaved changes to your file.

To delete things from your file, you may use the backspace when in insert mode. When in command
mode, you may use the x command to delete the character under the cursor, or you may use the
d command along with a cursor movement command to indicate what you want to delete. For
example:

• dd deletes the physical line under the cursor

• 2dd deletes the physical line under the cursor as well as the next one (two total)

• 11dd deletes the physical line under the cursor as well as the next ten lines (eleven total)

• dw deletes the word starting at the cursor and continuing to the next word delimited by
punctuation

• dW deletes the word starting at the cursor and continuing to the next word delimited by space

• d% deletes the {()} under the cursor and everything up the matching {()}

• d$ deletes the character under the cursor and everything to the end of the line

• x deletes the character under the cursor

• X deletes the character under the cursor and backspaces

To take two seperate lines and make them into one big one, place the cursor on the first of the two
lines and press J to “join” them.

To move text from one place in your file to another, you may delete it or yank it and then paste it.
Use above delete commands if you want to remove the text and relocate it, or you may leave the
text in place and make a copy of it by yanking it. To yank text, you use the y command the same
way you use the d command. For example, yy will yank one line and 5yy will yank five lines. . .
Then position the cursor where you want to paste it and press p.

To search for things in your file, you enter command mode and then you type / followed by what
is called a regular expression that describes what you are looking for. A regular expression includes
the identity set for anything spelled with letters and numbers, so you can easily type something
like /main(to jump to the start of the main function in your program. . . provided that your open-
parenthesis is pressed against the functions name. If you use a consistant style in your coding, this
mechanism allows you to fly around your source and edit it with great ease.

The biggest problem with vi(1) is that if you are using it on a system supporting a mouse and
copy/paste operations (which is recommended), you may accidently paste some text that you want
to insert into your file when you are in command mode. As you can see by the above command
description (and there are many more commands) there are several ways to delete things from your
file. Odds are good that you will destroy your file by pasting stuff into command mode. Consider
the consequences of pasting a d1000 into command mode followed by a d1. You can use the undo
to undo the d1, but that is it... the d1 is the last command! The moral of this??? Be way careful
about pasteing into vi(1).

I strongly suggest that if you want to use this editor that you check out the man page and prac-
tice before you are in a hurry. Consult your TA, instructor, or the course web site for additional
information about vi(1).

Copyright c© 2014, 2015 John Winans. All Rights Reserved

~/NIU/courses/631/2015-sp-1/notes/unix.tex
jwinans@niu.edu 2015-01-14 20:44:08 -0600 v1.0-247-g9b87820 (-- DRAFT --)

Page 14 of 19

CHAPTER 1. UNIX COMMAND SUMMARY 1.9. TERMINATION AND OUTPUT

1.8.2 pico

This editor is simple to learn and operate, but it takes more keystrokes per-edit than vi(1) or
emacs(1) to use. This simplicity, however, makes it safer than the more advanced editors because
you can’t do so much damage per-keystroke when you don’t know what you are doing. You run
pico(1) like vi(1):

pico myfile.c

Unlike vi(1), pico(1) does not operate in a dual-mode style and thus may be more suitable for
beginners. Control characters are used to move the cursor about and to enter commands.

• ^Y moves up one screen

• ^V moves down one screen

• ^A moves cursor to the beginning of the line

• ^E moves cursor to the end of the line

• ^D deletes the current cursor position

• ^K deletes the current line

• ^U undelete

• ^X saves the file

• ^W search for a specific word

To move blocks of text around use the ^K for each sucessive line you want to copy. Then move
the cursor to the location that you want the text to go and use ^U to put it there. For those that
don’t want to invest time in learning (which would cause me to ask the question, “why are you in
school?”) about better editors that can save you time in the long run, this editor is the one for you.

1.8.3 Other Editors

For those of you who want to be able to do your programs off campus and don’t want to waste
phone time just typing code, you can use any editor you want. I used DOS Edit to do all of my
440 progs then I used ftp(1) to send the files to my Unix account at NIU. You can also use word
or wordperfect only you must be sure to save the file as an ascii file! When you are typing your
program on another editor just use the basic stuff no bolding, special fonts, watermarks. . .

1.9 Termination and Output

I have no doubt that everyone has run into an endless loop at one time or another. Here is what
you do about it in unix.

1.9.1 Job Control

Job control is used to run more than one command at a time. In order to run more than one
command at a time, you place an ampersand ‘&’ at the end of your Unix command. This can be
helpful especially if the command will take a long time to run.

Copyright c© 2014, 2015 John Winans. All Rights Reserved

~/NIU/courses/631/2015-sp-1/notes/unix.tex
jwinans@niu.edu 2015-01-14 20:44:08 -0600 v1.0-247-g9b87820 (-- DRAFT --)

Page 15 of 19

CHAPTER 1. UNIX COMMAND SUMMARY 1.9. TERMINATION AND OUTPUT

% prog2 &

One handy thing to do is to hit ^Z while in an application like pico(1) or vi(1). This will put the
current application in the background and give you the prompt to do other things.

To find out what jobs/processes you have going, type jobs -l at the prompt and it will list the jobs
and their statuses:

[1] + 12345 Running loop
[2] - 54321 stopped loop2
[3] 32145 stopped pico prog1.c

The number inside the [] is just the job number, the next number is the process identification
number of the job, next column tells about the state of the job, and the last column is the name of
the process. The + stands for the current job and the - stands for the previous job.

As you can see 2 and 3 are in the background and 1, the loop, is running in the forground.

1. To bring job 3 into the forground type fg %3

2. To put job 1 into the background type bg %1

3. To kill job 1 just type kill -KILL %1

4. (or) To kill job 1 just type kill -KILL 12345

5. To kill the current job just type kill -KILL %

6. Of course you can also use ^C to kill forground jobs.

1.9.2 kill(1)

Use kill(1) to send a signal to a process and let it know that it should be stopped. To make sure that
the process will die use kill -KILL (processid or job number). This is usefull to kill an unwanted
endless loop. Depending on what you have gotten yourself into, you may have to login on another
terminal to do this. Note that if the system administrator has kill your programs it tends
to make them cranky. . . to put it nicely. :-)

Copyright c© 2014, 2015 John Winans. All Rights Reserved

~/NIU/courses/631/2015-sp-1/notes/unix.tex
jwinans@niu.edu 2015-01-14 20:44:08 -0600 v1.0-247-g9b87820 (-- DRAFT --)

Page 16 of 19

Chapter 2

Designing Debugging Into Your
Programs

As the semester progresses, you will learn that when writing complex programs, you have the design
debugging directly into your program from the begining. The following function is used just like a
printf(3c), but by changing the value in debugLevel, you can tell the debug function if it should
print or not. This way, you can leave your debugging statements in your final program and simply
tell it not to print any of the debugging output.

Why would you want to do this? Well, few programs are ever perfect. It is likely that you will debug,
run, debug, run, debug, run. . . and will not want to have to add, delete, add, delete. . . statements
that print debugging output all the time.

The way you would use this function is copy it into your assignment and then use debug instead of
printf any time you would want to add a print statement to display some debugging output. To
turn debugging on and off, you will want to change the value assigned to debugLevel.

#include <stdarg.h>
static void debug(int level, char *format, ...)
#ifdef __GNUC__

__attribute__((format(printf, 2, 3)))
#endif
;

int debugLevel = 0;

/***
*
* A custom version of printf() that only prints
* stuff if debugFlag is at or above the given
* message level.
*
**/
static void debug(int level, char *format, ...)
{

va_list ap;
if (debugLevel >= level)
{

va_start(ap, format);
(void) vfprintf(stderr, format, ap);

Copyright c© 2014, 2015 John Winans. All Rights Reserved

~/NIU/courses/631/2015-sp-1/notes/unix.tex
jwinans@niu.edu 2015-01-14 20:44:08 -0600 v1.0-247-g9b87820 (-- DRAFT --)

Page 17 of 19

CHAPTER 2. DESIGNING DEBUGGING INTO YOUR PROGRAMS

va_end(ap);
}
return;

}

Some examples of how to use the above debug function:

debug(90, "I am in the ***** function\n");
debug(50, "The answer before the while is: %d\n", ans);

The first example will only print its output if the current value of debugLevel is greater 89. The
second will only print if debugLevel is greater than 49. Using a numbering convention will allow
you to increase or decrease the volume of debugging output detail... and if you only use positive
numbers in your debug statements, setting debugLevel to zero will turn them all off.

What I normally do is define a command-line parameter -d that can be used to specify the value
for debugLevel so that I can change it on any run of the program like this:

myprog -d50 other parms go here
myprog other parms go here
myprog -d1000 other parms go here

Copyright c© 2014, 2015 John Winans. All Rights Reserved

~/NIU/courses/631/2015-sp-1/notes/unix.tex
jwinans@niu.edu 2015-01-14 20:44:08 -0600 v1.0-247-g9b87820 (-- DRAFT --)

Page 18 of 19

Chapter 3

Using the gcc(1) Debugger gdb(1)

You can use this debugger to help you debug your programs. This is not an exaustive list of what
you can do with it but it is a good place to start.

When compiling your code you must include -ggdb option. This will put the debugging info in.
Your command might look something like:

gcc -lm -Wall -ansi -pendantic -ggdb -o prog1 prog1.c

To start the debugger you type gdb prog1. This will give you the prompt (gdb). You must reload
for every time you recompile your program.

1. General Stuff

• file executable file – Loads debugging info.

• quit – Will quit the debugger

• help – Will give the help options

• help topic – will give the help on that specific topic

• Running (help running)

– run – Runs until break point, abends, or normal termination
– run < prog.dat > output – Will let you use redirection
– continue N – Continue execution after the breakpoint. N is the number of times to

ignore this breakpoint, and N is optional.
– step N – Execute next line of code. This will trace into your function calls. N is

optional and is the number of lines to be executed.
– next N – execute next line. If it is a function call execute function, but do not trace

into the function.
– kill – to stop the current program
– set args arg1 ‘‘arg2’’ – sets the arguments. Strings must be in quotes. Argu-

ments stay set until you type set args by itself.

• Examining Data (help data)

– whatis Expression – Will tell you what it is. Expression can be a variable name or
p -> member.

– print Expression – Prints the current value of the expression. Note that NULL = 0x0

– printf "format string", arg1, arg2 – Gives formated print
– display expression(s) – Print expression every time the prog pauses execution

display also assigns a code number for each expression starting at 1.

Copyright c© 2014, 2015 John Winans. All Rights Reserved

~/NIU/courses/631/2015-sp-1/notes/unix.tex
jwinans@niu.edu 2015-01-14 20:44:08 -0600 v1.0-247-g9b87820 (-- DRAFT --)

Page 19 of 19

CHAPTER 3. USING THE GCC(1) DEBUGGER GDB(1)

– undisplay code \#’s – Delete display items. If no code number is given the default
is all are deleted. The code #’s are separated by a space.

– enable display code \#’s – Switch them on.
– disable display code \#’s – Switch them off.
– info display – Will show you the list of expressions with their corresponding code

#’s.

• Setting Break Points You have to set at least one break pt to be of any use

– break line \# -or- function name – Will clear all break points at that place
– delete code \#’s – Defaults to all if no code number is given
– enable breakpoints code \#’s – Self explanitory
– disable breakpoints code \#’s – Self explanitory
– info breakpoints – Shows the list of breakpts
– enable once – Enable them once then disable
– enable delete – Enable once then delete the breakpoints
– code \# (condition) – If true then enable else disable. See help condition

• Listing Program Code

– list function name – Frst 10 or so lines are printed. List will default to where you
are now

– watch – Runs program until the value changes slows things down.

Copyright c© 2014, 2015 John Winans. All Rights Reserved

~/NIU/courses/631/2015-sp-1/notes/unix.tex
jwinans@niu.edu 2015-01-14 20:44:08 -0600 v1.0-247-g9b87820 (-- DRAFT --)

Page 20 of 19

