
HTTP Server Application

1 Introduction

You are to design and develop a concurrent TCP server that implements the HTTP protocol in the
form of what is commonly called a “web server.” This server will accept and process HEAD and GET
transations from a web browser using the HTTP/1.0 protocol.

Each time your server receives a connection (aka “hit”) it shall process one single request and count
its type. Those counters are to be used for a server status report.

2 HTTP Protocol Basics

HTTP is a protocol that allows a client application, such as a web browser, to request a data item
(refered to as an entity-body) from a listening server appication.

This section describes the bare minumum requirements for an HTTP server. The complete de-
tails of the HTTP/1.0 protocol are described in RFC 1945 (you can view this and other RFCs at
http://www.ietf.org/).

2.1 Client Connection and Transaction Request

Your web server will accept(2) connections that are initiated from client applications running on
machines connected to the internet.

Once a connection is accepted, the client application will transmit one request. Your server support
request types that are called HEAD and GET.

Each request will be made using a seperate TCP connection. This mode of operation is called
Connection: close mode because the server will close the socket after sending its response data.
While there are other modes that we could support, we will use this one because it is the simplest.

Each TCP connection will consist of two phases. Each phase is characterized by the fact that data
flows in only one direction.

The first phase is called the request phase. This is where the client delivers a HEAD or a GET request
by sending one or more lines of text (called headers) followed by a blank line. After the client sends
the blank line, the request phase is complete. After the request phase, the client will not send any
more data.

The second phase is the response phase. This is where the web server delivers a set of headers
describing the requested entity–body, a blank line and the requested entity–body and then closes
the connection.

NOTE that all the text lines that comprise the request phase and all the headers of the response
phase are terminated with \r\n and not just \n. This is because the HTTP protocol specification
requires it.

Your server must generate these proper line terminators and it will tolerate clients terminating their
request headers with either \r\n or just \n. This will make it easier to test your server with the
nc(1) command.

Copyright c© 2014, 2015 John Winans. All Rights Reserved

~/NIU/courses/631/2015-sp-1/assignments/http/http.tex
jwinans@niu.edu 2015-04-20 08:12:30 -0500 v1.0-351-ga8e3755

Page 1 of 7

HTTP Server Application

2.1.1 The GET Transaction

In terms of the the world wide web, a GET request is the transaction that is performed when a web
browser connects to a web server and downloads a web page of some kind.

A typical GET request might be the transaction that is used to display my faculty page on the NIU
CS department web server as described by the URL http://faculty.cs.niu.edu/

Request Phase

When a URL is given to a web browser, it will open a TCP connection to the named machine and
port and send a GET request. Given the URL:

http://faculty.cs.niu.edu

. . . a web browser will open a TCP socket to port 80 on faculty.cs.niu.edu (note that port 80 is
a default port for HTTP if none is explicitly specified in a URL) and send the following request:

1 GET / HTTP /1.0

To connect to a web server on a port other than 80, you would include the port number in the URL
after the hostname. For example, if the above web site were running on port 7212, rather than 80,
one would use http://faculty.cs.niu.edu:7212 In this case, the GET request message would be
identical, but the connection would be made to port 7212 rather than to port 80.

Note that a client/web browser may provide additional information during the request phase. That
additional information can be ignored for this assignment. This additional information (when
present) will be provided as additional lines of text that you will read and discard. Eventually,
the client will send a blank line of text to terminate the request phase.

The following is an example of a Firefox web browser accessing a listening nc command with the
URL: http://localhost:12345/

1 [winans@w520 http]$ nc -l 12345

2 GET / HTTP /1.1

3 Host: localhost :12345

4 User -Agent: Mozilla /5.0 (X11; Linux x86_64; rv :31.0) Gecko /20100101 Firefox /31.0

5 Accept: text/html ,application/xhtml+xml ,application/xml;q=0.9 ,*/*;q=0.8

6 Accept -Language: en -US,en;q=0.5

7 Accept -Encoding: gzip , deflate

8 DNT: 1

9 Connection: keep -alive

The GET request will always appear on the first line. The requested protocol may or may not be
HTTP/1.0, however, the HTTP protocol allows the server to downgrade the protocol to 1.0 and you
will will take advantage of that fact to simplify your server application.

Note that this request includes a request for a keep-alive connection. As you will see below, you
can take advantage of downgrading this option to close in order to, again, simplify your server
application.

Response Phase

The response phase for a GET request starts with meta–data/information about the entity–body/data
in the form of headers. Continuing with our example of the faculty web server, the above GET request
returns the following header lines blank line and entity body:

1 HTTP /1.1 200 OK

2 Date: Sun , 19 Apr 2015 22:37:26 GMT

3 Server: Apache /2.2.22 (Debian)

4 Last -Modified: Thu , 30 Jul 2009 22:32:31 GMT

Copyright c© 2014, 2015 John Winans. All Rights Reserved

~/NIU/courses/631/2015-sp-1/assignments/http/http.tex
jwinans@niu.edu 2015-04-20 08:12:30 -0500 v1.0-351-ga8e3755

Page 2 of 7

HTTP Server Application

5 ETag: "48009 -41 -46 ff3e1179dc0"

6 Accept -Ranges: bytes

7 Content -Length: 65

8 Vary: Accept -Encoding

9 Connection: close

10 Content -Type: text/html

11

12 <html ><body ><h1 >Welcome to babbage.cs.niu.edu </h1 ></body ></html >

In this typical example, we see several more lines than are necessary. The only header lines that are
required for proper operation are those described below. We show this complete example here to
illustrate additional options and possibilities.

In order to complete this assignment, you need only provide the following header lines in your
responses:

1 HTTP /1.0 200 OK

2 Content -Type: text/plain

3 Connection: close

The first response line is the status line. The possible values for the numeric status field are discussed
in the HTTP protocol specification. The status code for a successful completion is 200 as shown
here.

The Content-Type: header is what tells the browser the type of data that it will receive in the
entity–body. In this case, it is an HTML document.

The Connection header is used by the server to tell the browser NOT to try to make multiple
requests in the same connection. If you leave this line out, your server may periodically appear to
get stuck.

Following the header, the entity-body is sent and the socket connection is closed.

2.1.2 The HEAD Transaction

The HEAD request performs the same operation as the GET except the entity–body is not delivered
in the response phase. It can be used by web browsers that cache large entity–bodies to detemine if
their copy has become out of date.

3 Writing the Server Application

As when writing any program, start with a simple function and get it working perfectly before
moving onto more complex operations.

3.1 Phase I

Implement a status reporting “page” that displays some details about your server and test it using
nc(1) so you can see exactly what is happening. Even a small mistake could prevent a web browser
from displaying anything at all from your server thus making it very tough to use for debugging.

Your server statistics report should only be returned when a request is made for /status. Your
report must provide the following items:

• The current date and time (see ctime(3) and time(2)).

• The date and time that the server was started.

Copyright c© 2014, 2015 John Winans. All Rights Reserved

~/NIU/courses/631/2015-sp-1/assignments/http/http.tex
jwinans@niu.edu 2015-04-20 08:12:30 -0500 v1.0-351-ga8e3755

Page 3 of 7

HTTP Server Application

• An indication of how long your web server has been up and running. This is commonly referred
to as the uptime of the application.

• The total number of hits.

• The total number of GET requests.

• The total number of HEAD requests.

• The total number of invalid/bad requests.

• The total number of transactions that were aborted due to timeouts.

• The total number of transactions that were aborted due to interrupted writes to the client
(aka SIGPIPE).

To test the status report page, use the nc(1) command and type in a GET request by hand:

1 [winans@w520 http]$ nc localhost 56316

2 GET /status HTTP /1.0 <---- request header

3 <---- request (blank line)

1 HTTP /1.0 200 OK <---- response header

2 Content -Type: text/plain <---- response header

3 Connection: close <---- response header

4 <---- response (blank line)

5 Current time: Sun Apr 19 16:00:34 2015 <---- response entity -body

6 Last restart: Sun Apr 19 15:57:48 2015 <---- response entity -body

7 Uptime: 0 hours , 2 minuites , 46 seconds <---- response entity -body

8 <---- response entity -body

9 Socket Peer details: <---- response entity -body

10 Address: 127.0.0.1 <---- response entity -body

11 Port: 24448 <---- response entity -body

12 <---- response entity -body

13 Program Status <---- response entity -body

14 Total Hits:9 <---- response entity -body

15 GET requests ...:8 <---- response entity -body

16 HEAD requests ..:0 <---- response entity -body

17 Bad requests ...:1 <---- response entity -body

18 Timeouts:0 <---- response entity -body

19 Broken pipes ...:0 <---- response entity -body

A detailed look at the above response message shows that each of the lines are terminated with \r\n
can be created by using nc(1) and hexdump(1) like this:

1 nc localhost 56316 | hexdump -C

. . . and by then entering the sage GET request and blank line as shown above.

1 00000000 48 54 54 50 2f 31 2e 30 20 32 30 30 20 4f 4b 0d |HTTP /1.0 200 OK.|

2 00000010 0a 43 6f 6e 74 65 6e 74 2d 54 79 70 65 3a 20 74 |.Content -Type: t|

3 00000020 65 78 74 2f 70 6c 61 69 6e 0d 0a 43 6f 6e 6e 65 |ext/plain.. Conne|

4 00000030 63 74 69 6f 6e 3a 20 63 6c 6f 73 65 0d 0a 0d 0a |ction: close|

5 00000040 43 75 72 72 65 6e 74 20 74 69 6d 65 3a 20 53 75 |Current time: Su|

6 00000050 6e 20 41 70 72 20 31 39 20 31 36 3a 30 30 3a 33 |n Apr 19 16:00:3|

7 00000060 34 20 32 30 31 35 0d 0a 4c 61 73 74 20 72 65 73 |4 2015.. Last res|

8 00000070 74 61 72 74 3a 20 53 75 6e 20 41 70 72 20 31 39 |tart: Sun Apr 19|

9 00000080 20 31 35 3a 35 37 3a 34 38 20 32 30 31 35 0d 0a | 15:57:48 2015..|

10 00000090 20 20 20 20 20 20 55 70 74 69 6d 65 3a 20 30 20 | Uptime: 0 |

11 000000 a0 68 6f 75 72 73 2c 20 32 20 6d 69 6e 75 69 74 65 |hours , 2 minuite|

12 000000 b0 73 2c 20 34 36 20 73 65 63 6f 6e 64 73 0d 0a 0d |s, 46 seconds ...|

13 000000 c0 0a 53 6f 63 6b 65 74 20 50 65 65 72 20 64 65 74 |. Socket Peer det|

14 000000 d0 61 69 6c 73 3a 0d 0a 20 20 41 64 64 72 65 73 73 |ails :.. Address|

15 000000 e0 3a 20 31 32 37 2e 30 2e 30 2e 31 0d 0a 20 20 20 |: 127.0.0.1.. |

16 000000 f0 20 20 50 6f 72 74 3a 20 32 34 34 34 38 0d 0a 0d | Port: 24448...|

17 00000100 0a 50 72 6f 67 72 61 6d 20 53 74 61 74 75 73 0d |. Program Status .|

Copyright c© 2014, 2015 John Winans. All Rights Reserved

~/NIU/courses/631/2015-sp-1/assignments/http/http.tex
jwinans@niu.edu 2015-04-20 08:12:30 -0500 v1.0-351-ga8e3755

Page 4 of 7

HTTP Server Application

18 00000110 0a 20 20 54 6f 74 61 6c 20 48 69 74 73 2e 2e 2e |. Total Hits ...|

19 00000120 2e 2e 3a 39 0d 0a 20 20 47 45 54 20 72 65 71 75 |..:9.. GET requ|

20 00000130 65 73 74 73 2e 2e 2e 3a 38 0d 0a 20 20 48 45 41 |ests ...:8.. HEA|

21 00000140 44 20 72 65 71 75 65 73 74 73 2e 2e 3a 30 0d 0a |D requests ..:0..|

22 00000150 20 20 42 61 64 20 72 65 71 75 65 73 74 73 2e 2e | Bad requests ..|

23 00000160 2e 3a 31 0d 0a 20 20 54 69 6d 65 6f 75 74 73 20 |.:1.. Timeouts |

24 00000170 2e 2e 2e 2e 2e 2e 3a 30 0d 0a 20 20 42 72 6f 6b |......:0.. Brok|

25 00000180 65 6e 20 70 69 70 65 73 2e 2e 2e 3a 30 0d 0a |en pipes ...:0..|

26 0000018f

Your parent process must count the transactions and their types that are being handled by the child
process in your concurrent server. Recall that the child process does not have the ability to directly
alter variables in the parent process. To identify the operations performed in your child processes,
use different exit status codes that you can inspect from the SIGCHLD handler in your parent
process. Note that you have to indicate the request type (GET or HEAD) as well as an indication of
how it was completed (invalid, timeout, SIGPIPE).

Get this working perfectly before proceeding to the next phase.

3.2 Phase II

Once the status report is working, enhance your web server to serve web pages from files.

3.2.1 Illegal URLs

Before adding the code to deliver the contents of files, you must verify that your application has not
been fooled into sending the wrong files by mistake or in response to a malicous user is trying to
hack into your application.

Any URL processed by your web server should be considered illegal if it is not composed of a slash
‘/’followed by zero or more of the following characters:

a b c d e f g h i j k l m n o p q r s t u v w x y z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0 1 2 3 4 5 6 7 8 9 0 / ? . _ % & - #

Further, requested filename that contains a directory name of .. shall be considered legal. To check
for this case make sure that the request does not include “/../” anywhere and that the pathname
does not end with “/..” You can easily check for these cases by using strstr(3).

Requests that are made to illegal URLs should be handled by sending an error message page as the
response. (See the HTTP specification for the meanings of the status codes on the request status
line in the response headers. For this project using just 200 and 404 will suffice.)

1 [winans@w520 Desktop]$ nc localhost 33885

2 GET /../../../a/b/c HTTP /1.0

3

4 HTTP /1.0 404 Not Found

5 Content -Type: text/plain

6 Connection: close

7

8 Error: Query containing .. path element is illegal.

3.2.2 Content Types

In order to serve web pages from files, your new web server will have to be able to open the
requested files and return their contents. When this operation takes place, your web server must

Copyright c© 2014, 2015 John Winans. All Rights Reserved

~/NIU/courses/631/2015-sp-1/assignments/http/http.tex
jwinans@niu.edu 2015-04-20 08:12:30 -0500 v1.0-351-ga8e3755

Page 5 of 7

HTTP Server Application

report the type of the file to the client before delivering it. In your status report, this is simply
hardcoded to text/plain. To deliver files of varying types, you can use the name of the requested
file to determine its type. For example, if a file name ends with .txt, you will deliver it with a
Content-type: text/plain response header. If the requested file name ends with .gif, you will
deliver it witn Content-type: image/gif and so on. The set of types that you are required support
with your server are given in the table below:

Ends with Content-Type:
.gif image/gif
.jpg image/jpeg
.jpeg image/jpeg
.html text/html
.txt text/plain
(default) text/plain

If the requested file name ends with anything else, use Content-type: text/plain.

3.2.3 Delivering Files

In order for your web server to be useful, it has to be able to deliver the contents of files as they are
requested (when their names are valid).

In order to do this, use open(2) and read(2) to read the requested file and write(3) to write the
data to the client socket.

While write(2)ing to the client, it is possible that an error could occur. Specifically, the client
could decide to close the TCP connection/socket before you are finished writing the content body!
This situation will result in the O/S delivering a broken pipe signal to your process. Be sure to
check for and handle these problems and return a proper exit(3) status for the parent process to
use when counting transaction types and completion statuses.

3.2.4 Debugging Output

In order to grade your assignment, it will be necessary to the details about errors related to illegal
requests and file processing on your server. Therefore you must provide meaningful messages in the
entity–body of any 4xx–series error response (like the illegal “..” example above.)

During development include debug printf(3) lines that print the file descriptor numbers returned
from the accept(2) call. This will provide a way to verify that programming errors and timeouts
don’t result in file descriptors that are left open by mistake. Note: each connection serviced by this
web server should end up reusing the same file descriptor number. If you forget to close(2) them
after you fork(2), the next one that you accept(2) will be a different number each time.

3.2.5 Handling Exceptional Situations

You have to deal with errors in your child processes and communication problems.

Most of the time a communication problem results in your process becomming blocked and waiting
indefinitely. The simplest way to address this is to register a SIGALRM handler and use alarm(2) to
create a timeout in your child process after your parent calls fork(2). A suitable timeout value for
this project is 5 seconds. You might want to raise the timout value during debugging if you type
slowly.

Similarly, you will also require a SIGPIPE handler.

Copyright c© 2014, 2015 John Winans. All Rights Reserved

~/NIU/courses/631/2015-sp-1/assignments/http/http.tex
jwinans@niu.edu 2015-04-20 08:12:30 -0500 v1.0-351-ga8e3755

Page 6 of 7

HTTP Server Application

You can easily test your alarm timeout with a nc(1) connection that never sends a complete request.

You can test the SIGPIPE by adding a sleep(2) to your child process after it reads the request–
phase headers and before it delivers a response so that it takes a few seconds to finish. This will
give you enough time to do a test using nc(1) where you enter a command and a blank line and
then press ^C to kill nc(1) before your server has a chance to start writing. (Implement your server
so that an optional -s command–line argument can be used to turn on this syntnetic delay so that
it can be used during the grading process.)

3.3 Files I Give You

Implement your web server using the skeleton files that are available on my faculty web page.

This file is what is known as a tar(1) archive. It contains a number of files that are packaged
into a single archive file similar to a .zip file. In order to make use of it, you will need to open it
up somewhere under your home directory on tiger. Opening this tar archive will make a directory
named http and fill it with the files representing the skeleton web site and the Makefile that will be
used to grade your project.

You can open the compressed tar file like this:

1 tar zxvf http.tar.gz

3.4 How to Hand In Your Solution

You will turn in your assignment in person by scheduling a time to meet with your professor during
the last week of lectures. Be prepared to discuss the details of your solution and answer questions
about it for 30 minutes.

Copyright c© 2014, 2015 John Winans. All Rights Reserved

~/NIU/courses/631/2015-sp-1/assignments/http/http.tex
jwinans@niu.edu 2015-04-20 08:12:30 -0500 v1.0-351-ga8e3755

Page 7 of 7

