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ABSTRACT

Exploring coordinated relationships is important for sensemaking
of data in various fields, such as intelligence analysis. To support
such investigations, visual analysis tools use biclustering to mine
relationships in bipartite graphs and visualize the resulting biclusters
with standard graph visualization techniques. Due to overlaps among
biclusters, such visualizations can be cluttered (e.g., with many edge
crossings), when there are a large number of biclusters. Prior work
attempted to resolve this problem by automatically ordering nodes
in a bipartite graph. However, visual clutter is still a serious problem,
since the number of displayed biclusters remains unchanged. We
propose bicluster aggregation as an alternative approach, and have
developed two methods of interactively merging biclusters. These
interactive bicluster aggregations help organize similar biclusters and
reduce the number of displayed biclusters. Initial expert feedback
indicates potential usefulness of these techniques in practice.
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1 INTRODUCTION

Biclustering has been employed in visual analysis tools to support
investigating coordinated relationships [5, 13, 15, 18]. Coordinated
relationships are groups of shared relations between sets of entities,
and are involved in analytical tasks in various fields. For example,
intelligence analysts explore coordinated activities (e.g., six people
visited the same five cities on the same four days) from intelligence
reports to identify potential threats [8]. Security analysts investigate
coordinated communications among applications to detect malware
collusions [11]. Bioinformaticians examine coordinated relations
between genes and conditions to find similar genes [1].

A bicluster is a relationship between two sets of entities such
that each entity in one set is related to all in the other. Thus, it can
reveal a particular coordinated relationship. Moreover, biclusters can
be algorithmically mined from a dataset [10]. However, computed
biclusters can overlap with each other by sharing certain entities.
Edge bundles between entity lists can be used to show each bicluster,
and the resulting visualization based on bipartite graphs has been
proposed and studied [16].

When the number of computed biclusters is large, such
visualization can get cluttered easily. Prior work attempted to
resolve this by manipulating the orders of entities and bundles in the
visualization [20]. While ordering can help to reduce edge crossings,
the number of biclusters remains untouched. Thus, the visual clutter
issue may not be well addressed all the time, since the challenge of
reasonably reducing the number of presented biclusters endures.

To tackle this challenging problem, we propose two ways of
interactively aggregating biclusters in this bipartite graph-based
visualization. Automatic aggregation supports users merging groups
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of biclusters at once, while manual aggregation shows similar
biclusters to users in detail, and allows users to pick several of
them for aggregation. They help to reduce the number of displayed
biclusters and organize similar biclusters together, thus facilitating
users with visual analysis of coordinated relationships. Moreover,
we discuss our design rationale for the two aggregation techniques,
and present initial expert feedback about them.

2 BACKGROUND

2.1 Bicluster
Biclusters are computational results from biclustering algorithms,
which attempt to find both subsets of entities and dimensions
such that for each identified subset of entities, they have identical
behaviors within the corresponding subset of dimensions [10]. A
bicluster reveals a coordinated relationship between two entity sets,
and an entity set is a set of unique elements from a specific domain
(e.g., people) that are extracted from a dataset (e.g., documents).

Our notion of biclusters, in this paper, follows that discussed in
prior work [19]. A bicluster (A′, B′) on R (A, B) is defined as a
set A′ ⊆ A and a set B′ ⊆ B such that A′×B′ ⊆ R, where R (A, B)
denotes a relationship between A and B, which is a subset of A×B
(the Cartesian product of A and B ). That is, every element in A′
is related with each element in B′. In different scenarios, there are
different ways to model the relationship R. For example, R can be
determined by word co-occurrence in text analytics, or based on
communications between web applications in cyber security. Also,
the total number of entities denotes the size of a bicluster.

Computed biclusters can overlap each other by sharing some
entities, so a bicluster can be similar to another, to some extent.
Jaccard index (a.k.a., Jaccard similarity coefficient) is a useful
measure to compute set similarity, and it has been used to determine
the similarity between two biclusters [7].

2.2 Visualizing Biclusters in Bipartite Graphs
Considering components of a bicluster, there are three design
strategies to show biclusters: entity-driven, relationship-driven and
cluster-driven [23], respectively focusing on entities, relationships
between entities, and a bicluster as a whole. An entity-driven design,
without duplicating entities, applies a certain set visualization
technique (e.g., Line Sets [2] or Bubble Sets [4]) to reveal biclusters.
A relationship-driven design emphasizes relationships over entities.
It often uses a matrix to present relationships, and requires that
users interactively order the matrix to view different biclusters
(e.g., Bicluster Viewer [6]). A cluster-driven design highlights each
bicluster with its own visual mark, which allows duplicate entities
and relationships (e.g., Bixplorer [5], Furby [15], and BiDots [23]).

Due to overlap, it is not always easy to clearly show biclusters by
relying on their components without any duplication. This has been
identified as a key design challenge for bicluster visualization, and
led to BiSet, a bipartite graph-based visualization technique [18]. In
BiSet, entities are organized in lists, and their relationships are shown
as edges that connect entities from different lists. Each bicluster is
displayed as an edge bundle between two entity lists, which merges
relations of a bicluster and forms bicluster lists. This design attempts
to combine the three strategies: entities, relationships, and biclusters,
each having their own visual mark. While BiSet allows users to order



Figure 1: Two biclusters overlap by sharing entities: A2, A3, B2, B3.

entities and biclusters, the visualization can get cluttered easily, since
ordering does not change the number of displayed biclusters.

3 DESIGN RATIONALE

While this edge bundle based approach is flexible for users to
organize and manipulate both entities and biclusters, it still gets
cluttered due to the number of displayed biclusters, entities, or
relationships. Given a fixed display area, it is hard to resolve the
clutter without changing the number of visual elements presented.
For example, hundreds of biclusters can be mined from the Yeast and
Human B-cell Lymphoma datasets [3]. Our key goal is to reduce the
information displayed. In this work, as a starting point, we develop
aggregation techniques with a relatively small number (e.g., dozens
of biclusters in a bipartite graph).

It is not reasonable to remove some biclusters randomly, since
this may result in a loss of useful information for analysis. Instead,
we propose to use similarity between biclusters as a measure of the
amount of overlap and thus the likelihood that users might wish
to merge them. By aggregating similar biclusters, it is possible to
reduce the number of displayed visual elements. Our goal, then, is
to enable users to locate and aggregate similar biclusters.

At the same time, each bicluster has its unique information (e.g.,
entities). For example, as is shown in Figure 1, besides sharing four
entities, the two biclusters have their own unique entities. When
aggregating information from biclusters, we may form certain new
“bicluster”, a structure consisting of relations between entities from
two sets, such as {A1,A2,A3,A4} and {B1,B2,B3,B4}. The new
structure is similar to a bicluster, but not all entities in one set are
related to all entities in another (e.g., no connection between A1 and
B4). We call this type of structure, a merged bicluster, although
it does not fully follow the definition of bicluster (see Section 2.1).
Prior studies found that users can intentionally aggregate biclusters
like this, and use them for analyses, even when such aggregation is
not visualized [17, 20]. Also, for merged biclusters, users need to
know both shared and unique information. Thus, it is important to
show users both aspects for a merged bicluster.

In summary, our design goals in this work are: (G1) facilitating
users with finding similar biclusters; (G2) supporting users in
merging biclusters based on similarity; and (G3) visualizing merged
biclusters with both shared and unique information.

4 INTERACTIVE BICLUSTER AGGREGATION

Driven by these goals, we propose two interactive ways of bicluster
aggregation and build them on top of BiSet. It organizes entities and
biclusters in different lists, so users can easily see them. Compared
with matrix-based representations, BiSet does not duplicate entities
to display biclusters, even for those overlapping. When performing
bicluster aggregation, users can focus on bicluster-lists.

4.1 Bicluster Similarity Computation
Each bicluster includes two sets of entities that come from different
domains (e.g., student and class). Based on which set(s) a user
may emphasize on (e.g., student only, class only, or both), there are
three possible ways of computing similarity between two biclusters.
We design the following weighted Jaccard index to measure the
similarity between two biclusters, a and b (G1). It aims to enable
flexible user adjustment to emphasize one set over the other.

Jw(a,b) = w · Jc(a,b)+(1−w) · Jr(a,b), (0≤ w≤ 1) (1)

Figure 2: An example of visual encodings. (A), (B) and (C) present
a bicluster, a merged bicluster, a merged bicluster (under selection),
respectively. (D) and (E) show edges connecting merged biclusters
with related entities, and those in (E) are highlighted. (F) and (G) are
entities in the normal state and those in the highlighting state.

Jc(a,b) indicates the similarity between the two biclusters on one
entity set (e.g., student), and Jr(a,b) reveals the similarity between
them on another entity set (e.g., class). J(·) is the Jaccard index.
Moreover, w is a user selected weight that reveals how much one
entity set is emphasized.

Based on Equation (1), to support interactive aggregation, we
add two sliders, a weight slider and a threshold slider, to each
bicluster-list in BiSet (G2). The former enables users to control the
weight used in the equation. For instance, the more a user slides it
to the right, the more emphasis is given to the similarity between
the set of entities on the right (e.g., entities in the right neighboring
entity-list). The latter allows users to control the threshold for
aggregation. For example, when the computed similarity between
biclusters is greater than the value selected in the threshold slider,
we merge them. Moreover, the range of both sliders is from 0 to 1
(default setting is 0.5). Based on values selected in the two sliders,
we support both automatic and manual bicluster aggregation, and
they share the same visual encodings of merged biclusters.

4.2 Visual Encoding
Figure 2 gives an example of visual encodings that support bicluster
aggregation (G3). There are two entity-lists and one bicluster-list.
For entities, we keep the same visual encodings as those used in
BiSet. Each entity is displayed as a blue rectangle and a small
rectangle on the left of an entity shows its frequency in a dataset
(Figure 2F). Biclusters are displayed as two horizontally adjacent
rectangles with rounded corners. The length of these rectangles
reveals the number of related entities (on the left or right), and the
height of them are identical for biclusters (e.g., Figure 2A), which
do not include merged ones. For a merged bicluster, the height of
the two rectangles is determined by the number of biclusters that
are aggregated. The more biclusters are aggregated, the higher these
two rectangles are. For example, for the merged biclusters B and C
in Figure 2, B aggregates more biclusters than C.

Moreover, a merged bicluster has two types of edges, connecting
itself with its related entities, visually displayed as normal curves
and dashed curves (Figure 2D). The former indicates that all
biclusters, involved in an aggregation, share an entity (e.g., 20 April,
2003 ), while the latter reveals that not all biclusters in an aggregation
are related to an entity. The width of dashed curves is determined by
the number of biclusters that share an entity. For example, in Figure
2, for the merged bicluster B, the number of its biclusters related
with B. Dhaliwal, is larger than those sharing S. Albakri. When a
user selects a merged bicluster, its related entities are highlighted.
In concert with dashed curves, entities shared by more biclusters
are highlighted with a brighter color (Figure 2G). With these visual
encodings, a merged bicluster and its associated edges help to reveal
the information of biclusters that are aggregated.



Algorithm 1: Similarity based aggregation in a bicluster-list
input :bics, a set of biclusters

jMatrix, a matrix of pairwise similarity of biclusters
thresVal, a threshold to control bicluster aggregation

output :bicSets, a set of sets of biclusters to be merged
1 while bics is not empty do
2 aSet = new Set();
3 aSet.add(bics.pop());
4 foreach bic in bics do
5 movingFlag = 0;
6 foreach member in aSet do
7 if jMatrix[member][bic] ≥ thresVal then
8 movingFlag += 1;
9 if movingFlag = aSet.length then

10 aSet.add(bic);
11 bicSets.add(aSet);
12 while aSet is not empty do
13 bics.remove(aSet.pop());
14 return bicSets;

Figure 3: An example of automatic aggregation. (A) shows the original
layout. (B) is the result of applying aggregation to the layout in (A).

4.3 Automatic Aggregation
Automatic aggregation allows users to quickly aggregate biclusters
and get multiple merged biclusters at once. It is executed after a user
adjusts the value in either of the two sliders (G2), and aggregation
results are directly displayed without animation. Merged biclusters
are determined by similarity that is computed using Equation (1)
(G1). We use a greedy approach for automatic bicluster aggregation
by partitioning a bicluster-list into groups of biclusters (Algorithm
1) (G2). Based on the partition, biclusters within the same group are
further aggregated together. Automatic aggregation helps to reduce
information displayed on the screen, including both biclusters and
edges. Figure 3 shows an example with weight and threshold set as
0.1. Comparing Figure 3A with Figure 3B, the number of bicluster
reduces about 41% (from 12 to 7), and the number of edge decreases
around 14% (from 71 to 61).

4.4 Manual Aggregation
Manual aggregation allows users to specify similar biclusters for
merging. To support manual aggregation, we enhance BiSet with
two interactive features (G2): attraction and similarity radar.
Figure 4 shows an example of using the two features for bicluster
aggregation. Figure 4A and Figure 4B show that similar biclusters
move automatically as users drag a bicluster. This helps to reveal
similar biclusters and visually separates similar biclusters from
dissimilar ones (e.g., separated groups of biclusters in Figure 4B).
Figure 4C shows that after dragging, a similarity radar appears
and entities related with this group of similar biclusters move
to the position close to these biclusters (e.g., see the position of
entities changes between Figure 4C and Figure 4A). Moreover, by
interacting with the similarity radar, users can specify and merge
several biclusters together (Figure 4D and Figure 4E).

Figure 4: An example of manual bicluster aggregation by using two
interactive features: attraction and similarity radar. (A), (B) and (C)
sequentially shows the attraction as users drag a bicluster. (D) and
(E) shows manual bicluster aggregation by using a similarity radar.

4.4.1 Attraction
Attraction reveals similar biclusters and enables users to organize
them as well as related entities based on the one being investigated.
We apply the dust and magnet visual metaphor [22] at two levels
(bicluster-level and entity-level) to support attraction (G2). As
shown in Figure 4, when users drag a bicluster (as the magnet),
similar biclusters with related entities (as the dust) automatically
move with the dragged one. To be consistent with automatic
aggregation, the similarity calculation is based on user-selected
values using the two sliders, discussed before. Moreover, by
right-clicking menus on biclusters, users can choose to enable or
disable attraction (when they drag a bicluster). After attraction
is enabled, when dragging a bicluster, the distance between each
similar bicluster to the user-dragged one is determined based on the
similarity with a linear mapping function (G2). The more similar a
bicluster is, the shorter the distance it is from the dragged one.

4.4.2 Similarity Radar
The similarity radar plays two roles: indicating similarity levels,
and offering handles for manual aggregation. A similarity radar
includes a group of concentric ring areas in red (with different
brightness to reveal similarity levels), and the user dragged bicluster
locates in its center (Figure 5). The number of ring areas is
determined by the number of unique, computed similarity values,
and biclusters, with different similarity values, are placed in different
ring areas (G2). The outer circle radius of a ring area is determined
by the distance between the (farthest) similar bicluster (if there are
multiple) in it and the center one. The more inner ring area (visually
with more saturated red) a bicluster locates, the more similar it is to
the center one. For example, in Figure 5, bicluster D is more similar
to bicluster A than bicluster E is.

Moreover, a similarity radar also helps to reveal the size difference
among similar biclusters (G2). If the size of a similar bicluster is
larger (or smaller) than the user dragged one, it locates above (or
below) the center one. For example, in Figure 5, the similarity value
between biclusters C and A is the same with that between biclusters
D and A, as biclusters C and D are placed in the same ring area.
Bicluster C has a bigger size than bicluster A, while the size of



bicluster D is smaller than bicluster A. Thus, bicluster C is placed
above bicluster A, in Figure 5, but bicluster D is below bicluster A.

In some cases, multiple biclusters share the same similarity value.
If this happens, they are placed in the same ring area, so the size of
a particular ring area is enlarged. This helps to visually highlight a
group of biclusters that are equally similar to a user dragged one. In
addition, within such a ring area, similar biclusters are organized by
size, with the strategy discussed before.

Similar to the popup widget for subtree expanding or collapsing
in [12], a similarity radar enables users to merge a group of similar
biclusters by clicking on ring areas (G2). When a user hovers the
mouse over a ring area, its boundary (a circle) is highlighted (see
Figure 4D). After users click on a ring area, biclusters within the
highlighted boundary are merged (Figure 4E). These ring areas work
as handles to support users manually merging a group of similar
biclusters. Compared with manually selecting individual biclusters
for aggregation, such a similarity radar based bicluster aggregation
is more efficient. Users can merge a group of similar biclusters with
one click. Moreover, by viewing the position of biclusters on the
similarity radar for reference, compared with randomly merging one
bicluster with another, this similarity radar based aggregation may
lead to more reasonable merging decisions.

5 INITIAL EXPERT FEEDBACK

To evaluate the proposed interactive techniques, we conducted an
interview with a marketing analyst at an IT company with ten years
of experience. His job requires performing analyses on transaction
data to understand market trends and opportunities. Due to the large
amount of transactions (e.g., millions of records) in the real world,
he often starts with small samples (e.g., a few hundred or thousand
records) to try several analysis methods, and then applies them to the
whole dataset. He indicated the potential usefulness of interactive
bicluster aggregation in practice and also suggested improvements.

In the interview, he explored biclusters in a bipartite graph of
customer and product feature usage, extracted from a company’s
sales data. First, he appreciated the function of bicluster aggregation:
“Merging biclusters is helpful for me to find a bigger group of
customers, or set some new collections of features for sales. Also, it
makes my view looks better [less cluttered].” Considering the two
ways of bicluster aggregation, he thought automatic aggregation was
more efficient: “My job usually play with big data, so automatically
merging several ones works better for me.” He also confirmed the
usefulness of manual aggregation: “If I had time, I would definitely
like to check and merge information from biclusters by myself. I like
a lot the map [similarity radar] that encloses similar biclusters, as
it allows me to make a decision [of aggregation].”

Besides the positive comments, he raised three suggestions for
future improvement. First, regarding to similarity calculation, his
comment indicated that Jaccard index-based approach was not
enough: “These five features [in one bicluster] and those three
features [in another bicluster] should be grouped together, because
they were features about data integration service, but the tool did not

Figure 5: An example of a similarity radar. (A) shows a user dragged
bicluster. (B), (C), (D) and (E) are similar biclusters.

find that.” Second, he suggested more flexible ways of aggregation:
“Sometimes I just want some parts [of information] from biclusters,
not merging all [information from biclusters]. It would be great,
if I could do this, or make some changes to a merged bicluster.”
Third, he requested the ability to separating merged biclusters: “Can
I break this [merged] bicluster apart?”

6 CONCLUSION AND FUTURE WORK

We have presented two interactive approaches to aggregate biclusters.
Automatic aggregation supports users quickly merging groups of
biclusters. Manual aggregation shows similar biclusters and allows
users to select several of them for aggregation. By merging several
groups of biclusters at once, automatic aggregation both reduces
visual clutter and helps users gain a quick overview. Compared to
the former, manual aggregation needs more user-steering. It pulls,
shows, and aggregates related bicluster based on a user specified
one. They can be complementary to each other by supporting visual
analysis with either an “overview first” [14] strategy or an “analyze
first” [9] strategy.

Initial expert feedback shows potential usefulness of our proposed
aggregation techniques in practice. While this work demonstrates
the feasibility of interactive bicluster aggregation in bipartite graphs,
it has three limitations that need further studies.

First, using dashed curves for a merged bicluster may not scale
well. It reveals that an entity is not shared by all biclusters already
merged. However, if many dashed curves are displayed, due to a
large number of partially shared entities involved in aggregation,
it will cause visual clutter, and visually tracing dashed curves to
check connections is not easy. Also, it may not be effective by using
the width of a dashed curve to indicate the number of biclusters
sharing an entity. Moreover, the drag-and-drop based interaction
for manual aggregation cannot work well, when there are too many
biclusters. For example, it is hard for users to drag a bicluster that is
visually covered by a few others. To address them, we plan to study
other visual encodings and interaction-supportive features, including
fading parts of dashed curves to reduce visual clutter, clustering
biclusters, and zoom in/out the area displaying biclusters.

Second, this work currently only supports bicluster aggregation.
Based on shared entities, biclusters can be linked together to form
bicluster-chains [19], for a n-partite dataset. While this work can
only merge a specific part of chains, it is possible to extend the
technique from bicluster-level to chain-level. To compute similarity
between chains, we can consider each chain as a set of multiple
sets of entities and extend Equation (1) by considering more sets.
Moreover, Hao et al. have studied the surprisingness of related
chains for a given bicluster [21], so it is also possible to use the
computed surprisingness score to merge chains. To enable chain-
level aggregation, we plan to add extra visual encoding (e.g., a
colored ribbon) to show a specific chain, further propagate the dust
and magnet metaphor to multiple lists, and add UI widgets for users
to control chain-level aggregation as parts of chains or entire chains.

Third, the initial evaluation of our proposed techniques came from
one domain expert only. In order to gain an in-depth understanding
of the impact of these techniques on visually exploring coordinated
relationships, we need to conduct user studies in future, using both
synthetic and real world datasets. One key research question that
we plan to answer is: what are the trade-offs when using bicluster
aggregation? Based on our prior user studies on biclusters [5,17,20],
it takes users some time (e.g., from one to several minutes) to find
and understand a bicluster. Thus, instead of using simple, benchmark
tasks (e.g., asking users to merge three most relevant biclusters from
a list of biclusters), our future study will focus on users’ strategies
of aggregating biclusters and using them.
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