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Abstract

Chemical space is often discussed with a focus on the chemicals rather than the
spatiality. We focus on exploring a natural structure for representing chemical space
as a structured domain: embedding drug-like chemical space into an enumerable
hypergraph based on scaffold/fragment classes linked through an inclusion operator.
Storing the associated structure for over 100 billion molecules is intractable for
a standard database and it would lack generative qualities. This paper shows
transformer models can be used two-fold to generate novel molecules based on
relations to other molecules as well as retrieve molecules like a database based on
relational queries. Thus, the transformer model is used to navigate an underlying
graph representation of chemical space on-the-fly. We develop a user interface to
illustrate how on-the-fly chemical space generation and traversal can be interactive
and useful for medicinal chemistry and chemical space visualization.

1 Introduction

Sampling, enumerating, and understanding “chemical space” is the grand challenge of computational
chemistry [26, 39, 32]. The explosion of computational drug discovery and need for novel chemical
therapies has drawn in machine learning (ML) and high-performance computing (HPC) to produce
novel chemotypes and explore the diversity of chemical space [9]. Few authors have actually
addressed the spatiality of “chemical space”. A space, in the computational and mathematical sense,
is a set with some structure (prior). Nearly all treatments of chemical space assume no spatial
formalism at all outside of a basic vector space. The basic vector space follows from the use of
computational kernels, molecular descriptors, and then generalized to “the total descriptor space that
encompasses all the small carbon-based molecules that could in principle be created” [11]. Deep
learning embeddings have generally replaced the kernel-driven descriptor conception of chemical
space with a statistical unit ball structure (as resulting from a particular language model or variational
autoencoder (VAE) embedding) [3]. Without a doubt, the chemical aspect of chemical space has been
expanded greatly through these generation programs, but without too much formal attention to the
spatial-aspect.
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In this paper, we propose a strong prior for chemical space based on chemical scaffolds. We show
that chemical scaffolds turn chemical space into a mathematical ordered lattice (or a graph). We
train a transformer model on generating the graph relations from node to node. This can be seen
two-fold as both a generative problem, predicting new nodes which may have a particular relationship
to another node, and as a document retrieval/compression problem, retrieving the already computed
nodes which a particular relationship to another node. As chemical space enumerations continue to
grow, maintaining a structured relational dataset with over 100 billion molecules is nearly intractable.

Strong priors provide context to computational workflows by aligning humans theoretical retentions
with the protentions of a generative model. For example, a non-conditional GAN is useful for
generation a corpus of samples, but is not very useful for generating a series of example logos for a
new start-up company. Conditioning, in this case, is the application of a prior ontology–what entities
in the world one might want to discuss with the model. Strong priors include the model in a discpline’s
discourse by forcing it to interact based on the particular ontological and theoretical distinctions
already there in a field. While many object that stronger priors may limit the overall breadth of a
generative project, we remark that drug discovery requires money and time across computational and
non-computational disciplines which means either models choose to supplement the existing process
or only desire to completely rework it. Given the rapid need for expanding chemical space with the
gamut of therapeutics needs existing today, we pursue the former of contextualizing models into
current disciplines and workflows to supplement the discovery process rather than attempt to disrupt
and explode it. We showcase this novel generative strategy through an interactive web server which
combines algorithmic computational chemistry and generative deep learning into a single interface
for viewing regions of chemical space.

The enormous design space of chemical compounds, estimated to be about 1060 [4], motivates an
immediate need for efficient and often automated exploration for synthesis and assay development
for various applications, including drug discovery and materials design. Computational enumeration
of chemical space is a long-studied problem since the early ages of computing [7]. The current state
of the art projects have enumerated around 2 billion drug-like compounds, and GDB has around 166
billion compounds of up to 17 atoms of C, N, O, S, and halogens [37, 40]. Even with these vast
libraries, recent work has shown a vast difference between the diversity enumerated in ultra-large
libraries and the underlying space [22]. Especially in the context of drug discovery, an emerging need
in the cheminformatics community is the ability to navigate this enormous design space in the hopes
of generating new molecules (or designs) that can optimally bind to a protein/drug-target of interest
or refine molecules based on specific physio-chemical and safety features that make it attractive as a
drug that can be formulated for the market.

Given the vastness of drug-like chemical space, how can we computationally explore it? In 1875,
Caley published a short note on his enumeration of alkanes utilizing a tree structure [6]. Though
Caley’s enumeration ended up having a few errors, it is a very early account of treating chemical space
as a structured mathematical object [38]. Over 100 years later, the ideas of enumerating structurally
similar compounds and comparing their activity became known as quantitative structure relationship
studies (QSAR/SAR). QSAR/SAR is the standard method in medicinal chemistry for taking an
interesting chemical compound to an optimized and potent drug lead. In 1984, Klopman developed
Computer-Automated Structure Evaluation (CASE), which "perform[s] automatically all operations
related to the structure-activity analysis" [28]. A success in its own right, CASE utilized the graph
topology of molecules to generate QSAR studies or predict activity based on fragments. This graph
structure naturally leads to studying subgraphs and their relations, such as decomposing the graph into
a class of similar molecules sharing a framework (scaffold), linkers connecting rings, and sidechains
[2]. Utilizing these ideas, various tool-kits and genetic algorithms have been designed to combine or
grow molecular fragments into optimized drugs [30, 8]. While these ideas in organization lay the
framework for certain practices of medicinal chemistry, the methods do not address the problem of
enumerating compounds in an organized way to find diverse chemical scaffolds.

Deep learning (DL) offers a new set of tools and algorithms for generating novel molecular pieces.
With the introduction of generative models which can be sampled, such as variational autoencoders
[25], or generative adversarial networks [18], de-novo molecular generation took hold as a practice in
drug discovery [36]. Molecules were embedded into a continuous representation and then given a
decoder, sampled from continuous space—allowing property optimization and molecular generation
based on some distance metric in the latent representation. These approaches have had much success.
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Figure 1: Decomposition of a chemical scaffold and molecule. (a) Starting at the bottom, a
chemical scaffold with three rings is decomposed into two 2-ring scaffolds, which can be decomposed
further into 1-ring scaffolds. (b) Remdesivir is decomposed from the molecule, to its scaffold, rings
and linkers, and sidechains.

We extend on this work by focusing on computational organization and enumeration specifically—
seeking more structure than N (X,Σ) or Rn.

Our contribution in this paper is twofold: (1) representing large molecular libraries using molecular
building blocks (i.e., fragments, scaffold, linkers/decorations), and (2) learning to navigate latent
representations of molecular hypergraphs leveraging transformer networks to operate on molecular
building blocks to generate new molecules. This project is distinct from prior molecular generation
problems as we focus on enumerability and organization over property prediction. We demonstrate
that our building blocks representation provides a natural mechanism to organize large chemical
spaces in a statistically meaningful manner. Further, the transformer networks suggest the design
of novel molecules that can ‘expand’ on a given scaffold design, which can be used for subsequent
rounds of virtual screening studies.

2 Chemical Space as a Structured Domain

Consider the set of drug-like moleculesM. M is not directly computable as it is a concept class
for molecules. For computation, molecules require a computable representation, and this is the start
of the difficulty. Representations are models of molecules which can be identified with a molecule.
Graphs are a natural model of molecules, where nodes are atoms and edges are vertices [24]. SMILES
are another representation of molecules, which are a breadth-first search over the graph in a particular
syntax. SMILES, unlike graphs, are not injective over molecules (if two SMILES strings are not equal,
it does not imply the underlying molecules are not equivalent) [35]. There are other representations
which are less common such as point clouds, junction trees, or voxelization [14]. We define RX to be
a general representation mapping from molecules to some set X fromM.

Embeddings are distinct from representations. Embeddings are functions which take a representation
X to embedding space Y . For instance, molecular fingerprints are an algorithm which takes graphs
of molecules to Rn by utilizing a hashing function around the nodes or regions of a graph [44].
Node2vec models take graphs to Rn. A simple variational autoencoder’s encoder can take SMILES
to a Gaussian unit ball N (X,Σ). The junction tree variational autoencoder takes a junction tree to a
latent unit ball. In the later two examples, the idea of sampling from a normal unit ball is essential
for maintaining the density of the sampling space—an important aspect of creating a generative
model (see SI section 2 on sampling). Given a decoder, these embedding spaces can be sampled to
produce potentially new molecules or molecules through a constrained optimization problem. The
two embedding spaces so far have convenient distance metrics, denoted δY .

A number of papers have focused on generative models for the design of new molecules [13, 24, 16,
17, 29]. These approaches either use a string representation (e.g., SMILES representation mapped
onto a molecular graph) or an explicit molecular graph representation (e.g., [23]) to encode the
molecular data into a continuous representation from which new examples can be drawn.
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While these methods are very successful at certain property predictions and general optimization, they
do not solve the enumerability problem. Both Rn and N (X,Σ) are continuous and not countable.
In particular, every molecule has an open ball around it in embedding space of equivalent points
which is a problem for enumerating discrete sets of molecules. In other words, if ϕ−1 is a decoder
from an embedding Rn → X , and ≡ is an equivalence relation on the representation X , there exists
y1, y2 ∈ Rn and ε > 0 such that 0 < δRn(y1, y2) < ε so

ϕ−1(y1) 6≡ ϕ−1(y2).

In order to structure the embedding space to be conducive for enumeration, we must find an embedding
space that is countable and discrete, just as Caley sought out by means of a tree.

Molecular scaffolds are well defined through algorithms, decompose well into networks, and offer
a general description of global properties (such as orientation in a protein binding region) [2, 43].
Molecular scaffolds represent the core of a molecule, typically defined around the number of rings in
the structure. Non-ring sturctures in molecules include linkers and sidechains which get collapsed
in this representation to a single scaffold representative. In figure 1, we show a molecular scaffold
decomposing into smaller scaffolds. In this way, we can take a graph or SMILES representation of a
molecule and map it to this discrete embedding structure. The mapping into the scaffold structure is
unique. As other authors rely on decoders to decode the embedding space, we will rely on decoders
to sample the scaffold for the variety of molecules a part of it.

3 Methods

The conceptual machinery for treating chemical space is developed. There is an elegant statement of
the principle of fragment-based drug design through the operations among scaffolds. Further, the
framework developed provides intuitive concepts for understanding the diversity and size of chemical
space explored or discussed by a model or computational research program. As a computational
learning problem, we use transformer as seq2seq models to implement large graph navigation in
practice.

3.1 Scaffold Embeddings

Utilizing the concept of scaffolds developed in section 2, we assume the operation Scaffold as a
given oracle such that Scaffold is injective and defined for every molecule. We define S as the set
of all scaffolds.

A hypergraph is a generalized graph where edges group more than two vertices. A hypergraph is
n-regular when every vertex is contained in exactly n edges. Scaffolds as hypergraph edges over
molecules form a 1-regular graph, as every molecule belongs to exactly one scaffold class, thus every
vertex has degree 1 in the hypergraph. We denote the hypergraph asH = (M,S). The

Operations on scaffolds. We denote computational operations in Monospace font, and add a
subscript Φ to represent parameters which may be required for the operations (i.e. ExpandΦ).

1. ExpandΦ and Scaffold: Molecules and scaffolds represent two distinct types which can be
converted back and forth (figure 2B). Scaffold classes can be expanded, where we envision
zooming in, via the ExpandΦ model (i.e. ExpandΦ: S →M). Similarly, molecules can be
taken to their scaffold via the program Scaffold (Scaffold:M→ S). We utilize RDKit
to compute Scaffold via the MurckoScaffold module [31]. We note a model can be trained
for this task; however, given the efficiency of the algorithm it did not seem fruitful at this
time.

2. SuccessorΦ and Predecessor: the successors of a scaffold S1 are the set of all scaffolds
S which contains S1 as a substructure (figure 2). The predecessors of a scaffold S1 are all
scaffolds S which S1 is a superstructure. In general, there is no algorithm for successor given
only a scaffold, as it requires sampling chemical space. However, predecessor has an efficient
algorithm with a structure that can always be fragmented into smaller scaffolds without
sampling other data. These operations are the atomic building blocks of navigating between
scaffold classes (and induces a strict partial ordering (S, ≺)). These operations are from S
to S. We also consider the standard graph structure induced by the relation SuccessorΦ

and Predecessor, and denote it SG = (S,SuccessorΦ) where SuccessorΦ can be used
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Figure 2: (A) Scaffold as classes over drug-like chemical space. Every molecule (represented by
dots or depiction inside circles) is inside a single scaffold class. Scaffold classes are related through
common substructures, forming a hierarchy of classes. Penimocycline, for example, belongs to a
scaffolding class from far Penicillin-g’s or Amoxicillin’s class, while Pipracil is a direct successor of
the Penicillin-g class. The Predecessor function is defined via an algorithm, and the SuccessorΦ

function requires a generative model when working without data (i.e., given a single scaffold you
cannot compute its successor unless you understand chemistry, thus have parameters Φ, but you can
compute all of it is predecessors recursively without knowing how to generate new compounds).
(B) Scaffold and molecule relation. Scaffolds are the core or framework of a molecule, and they
represent a class of molecules. Scaffolds, or scaffold classes as we often refer, group molecules
together. A class can be extended by adding decorations to the scaffold, such as linkers and sidechains.
Through the scaffold function, we obtain the scaffold of a molecule. (C) Relations from nodes to
set of relations. The programmatic interface for taking a node, a string representation of a molecule,
and sampling the transformer model under the hood as a means of sampling chemical space on the
fly.

to determine the edge relation. This graph can be directed or undirected, but for our case we
consider the undirected graph mostly.

3. UnionΦ and Intersection: two scaffolds S1 and S2 can be combined to form a union.
More formally, the union of S1 and S2 is the set of scaffolds that contain S where S has
S1, and S2 has immediate predecessors. Similarly, the intersection of S1 and S2 is simply
the maximum common substructure (MCS) of S1 and S2, for which an efficient algorithm
exists for small drug-like molecules. [5, 10]. In general, MCS is NP-complete, but there
are heuristics for drug-like molecules that provide a rather efficient algorithm [15]. These
operations are from S to S.

These basic operations can be combined into more complex operations such as

UpperConeΦ(S) = {A : S ≺ A} (3.1)
or LowerCone(S) = {B : B ≺ S} (3.2)

Upper cones of scaffold classes are actually a common object of interest for drug discovery. For
instance, Penimocycline is in the upper cone of Penicillin-g’s scaffold class (see figure 2). Successful
exploration of upper cones is the theoretical cornerstone of fragment based drug design [41, 34].
Recently, fragment X-ray crystalgraphic screens have been performed on important drug targets such
as SARS-CoV-2 proteases in search of an inhibitor [12]. Given a set of fragment hits for a protein
target in a binding region,{mi}i∈H , take the scaffold classes of those hit, {Sh

i }i∈H . The principle of
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fragment based drug design can be expressed as there exists some index set I∗ such that I∗ ⊆ H and

Ĥ =
⋂
i∈I∗

UpperConeΦ(Sh
i ) (3.3)

where Ĥ is a set of scaffold classes, Ĥ is not empty, and some molecule in a scaffold in Ĥ is a likely
candidate. In other words, a set of fragments can be grown to sets of larger drug-like molecules,
and some intersection of those possible larger molecules will be a hit that is likely a drug lead for
this protein target. In an embedding space such as Rn, the same principal does not apply, and is
dependent on the embedding context (for instance, based on a particular property [21]). Furthermore,
there no guarantees about molecules in an interval between two molecules, whereas the intersection
of upper cones, for example, does have such guarantees (if it is not empty).

Given there is no algorithm for producing successor scaffolds without relying on sampling chemical
space, we treat the problem as a learning problem. We note that we cannot rely on fragments
as a vocabulary given this construction as other methods have (for instance, [23] utilized a finite
vocabulary containing one member rings, linkers, and sidechains from the dataset). When using such
a vocabulary, there are chains of scaffolds that cannot be represented as the SuccessorΦ function
can only sample scaffold classes S for which every one ring member in the LowerCone(S) is in the
finite vocabulary.

3.2 Modeling Hypergraphs with Transformers

While the method outlined has no constraints on compounds’ synthetic accessibility, it is a necessary
and essential aspect of chemical space exploration for drug discovery. To focus on synthetic acces-
sibility while paying attention to maximizing library size, we utilize a dataset from Synthetically
Accessible Virtual Inventory (SAVI) [37]. SAVI contains over 1.7 billion reaction products (along
with rich reaction and metadata). We utilize only the SMILES of the products.

We build two datasets from SAVI. The first utilizes RDKit to determine the scaffold for each of the
compounds listed [31]. We utilized a 200M sample from the entire dataset and extended the data by a
factor of 5 by randomizing the SMILES both for the target (scaffold) and source (molecule) [1]. A
set of 20M molecules with a unique scaffold class are held out as validation data. A second dataset is
created by taking a subsample of the prior dataset, 20M, and utilizing the ScaffoldGraph package
to decompose each scaffold into a network of scaffolds [43]. We sample edges (representing the
successor of two scaffold nodes), resulting in a dataset of five million successor pairs. This dataset is
extended to 50M utilizing random smiles sampling. Predecessor data is flipping the columns (sources
become targets, and targets become sources) for the successor datasets.

On the one hand, SuccessorΦ and ExpandΦ are generative models—given a scaffold, those operators
are required to sample the space of successor scaffolds or molecules that have that scaffold. On the
other hand, they are seq2seq task, taking one sequence to a different sequence. This combination of
wanting a dense sampling strategy combined with seq2seq modeling differs from applications we
have found in the literature. Common approaches to generative models have been utilizing VAEs or
GANs to train some encoder-decoder model on sample reconstruction error with some regularization
[14, 20, 19]. Seq2seq approaches in this space have focused on solving problems with a relatively
small optimal solution set such as reaction modeling [42]. With the recent success of transformer
models performing well on large datasets and seq2seq problems, we decided to follow the modeling
as a seq2seq problem as Schwaller et al. have.

We utilize a transformer seq2seq model from the ONMT project [27]. Other works have utilized
RNNs, but we utilize a transformer for both the encoder and decoder of the model [45]. Given
the goal of not simple generation but rather generalizing a very large hypergraph for which a pure
algorithmic solution is intractable, transformer models are a good fit compared to simpler RNN
models. Code is compiled into a GitHub repository with scripts for data gathering, data preparation,
model training, and sampling. The interface is geared towards developing front-end functions for
quick medicinal chemistry questions regarding sampling molecular space.
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Figure 3: Structure of scaffold classes We constructed the scaffold classes (4M) for a random
sample from SAVI (20M) molecules for (a)-(d). (a) We consider a random sample of 20M molecules
from SAVI, and construct the scaffold classes and graph associated with the classes. Out degree
indicates just Successor relations. (b) We show the distribution of the cardinality of (a)’s scaffold
classes, which follows a power law for part of the distribution, and a uniform distribution for the other.
(c) Scaffold classes are ordered into a hierarchy based on the number of rings its framework has.
(d) The left column shows the scaffolds with the largest out degrees for hierarchies 1 to 3, and the
right column shows random scaffolds of the least degree. (e-f) ExpandΦ model reconstruction and
sampling depth. 1000 samples scaffold classes are drawn from the validation data, and ExpandΦ

is sampled 100 times. Samples that are not valid smiles or passed verification are removed. (left)
Samples for each scaffold are intersected with the known molecules in that scaffold class from
the validation data, and the fraction found is plotted. Smaller scaffolds are often recovered while
larger ones are not. (right) Even though the ExpandΦ model captures most of the dataset for smaller
scaffolds, the model generates more valid molecules based on the natural distribution of the scaffold
class sizes in the data. (g) Expansion of a scaffold. The expansion of a scaffold class, highlighted in
red, is expanded by sampling ExpandΦ. Various side chains are added, but no sample is outside of
the class.

4 Results

4.1 Computability of Scaffold Classes

We assess the structure of scaffolding chemical space, focusing on understanding the size of scaffold
classes, how many scaffold groups there are in drug-like chemical space, and how they connect.

We impose a structure onM by creating scaffold classes S = {S}i∈Is such that every molecule m
belongs to one and only one scaffold class, and all classes in {S}i∈Is are disjoint. We also assign a
hierarchy to scaffolds based on the number of rings. Hn is the set of all scaffold classes with ring
size n.

H0 is the smallest hierarchy, which consists of only one scaffold class S0, the set of all molecules
with no rings (ring-less fragments, linkers, and side-chains). H1 is the set of all scaffold classes
with one ring. The order ofH2 is proportion to |H1| choose 2 plus the combination of linkages and
sidechain modifications fromH0. We see growth similar to the partition function in theory. However,
in practice, the distribution of molecules in real-world datasets typically follows a normal distribution
with the mean around three rings (see figure 3).

Given this added structure of scaffolds, do scaffolds reduce the search space over molecules by many
magnitude orders? If this is the case, we can search through a computable number of scaffolds, and
once a few interesting classes are found, we can enumerate the molecules in that set. This strategy
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Model SMILES Validity Type Accuracy Correctness Accuracy

SuccessorΦ 98.9% 98.9% 97.9%
Predecessor 99.8% 99.8% 94.0%
ExpandΦ 98.6% - 96.9%

Table 1: Performance metrics from graph navigation models. Evaluations were performed with a
holdout set from SAVI dataset. SMILES validity is the percent of samples that pass an RDKit parser.
Type accuracy determines how many samples have the correct type (Successor, Predecessor, and
Union models output type scaffold. In contrast, Expansion model outputs molecules (which can
include a scaffold representative, and this metric is left out and computed as a part of correctness).
Correctness accuracy is the percent of samples which are valid, typed correctly, and are equivalent to
the algorithmic solution.

Scaffold Class Size (Data) Unique Sampled Overlap (Recall)

c1ccc(COc2ccccc2)cc1 373,939 168,261 4,146 (1.1%)
O=S(=O)(c1ccccc1)N1CCCCCC1 88,608 145,904 20,097 (22.7%)
O=S(=O)(NCCc1ccccc1)c1ccccc1 911,360 176,539 23,715 (2.6%)
c1ccncc1 818,230 183,838 23,999 (3.0%)
O=S(=O)(NS(=O)(=O)c1cccnc1)c1ccccc1 203,891 173,599 20,331 (10.0%)

Table 2: Sampling dense classes with ExpandΦ. Five dense scaffold classes were taken from the
validation data and sampled. We sampled 100,000 times for each scaffold, utilizing a temperature of
1.5 and a beam search of length five and capturing the top two best beams from the search. While we
do not capture a large set of the data, we believe these classes’ sheer size presents a combinatorics
problem. The unique samples are all correct and valid.

does not face the curse of 1068 drug-like molecules the current unstructured domainM faces. Given
a 200M sample from SAVI, we found only 11.4M (5.7%) scaffold classes were needed to cover the
entire dataset, and, in practice, there exists a large subset of molecules (165M) with only 685,000
(0.41%) scaffold classes. This reduction via scaffolds implies for a large subset of molecules, there is
a reasonable 5 order of magnitude gain in search over scaffolds than pure molecules (from a database
or chemical library perspective).

4.2 Hyerpgraph Navigation

We train three operations (ExpandΦ, SuccessorΦ, Predecessor) utilizing three separate models.
While there is an algorithm for Predecessor, we can compare it directly to the algorithm perfor-
mance. Each model was trained for approximately two days on eight GPUs (NVIDIA Tesla V100).
Each model was trained for 500,000 steps with a batch size of 8192.

To sample ExpandΦ and SuccessorΦ we utilize beam search with a temperature of 1.5, beam size
of 5, and randomizing the SMILES input. Samples are then validated utilizing RDKit. In table 4.2,
we outline each model’s accuracy. A uniform sample of scaffolds from the validation data was taken
(n = 1000), and 100 samples were drawn for each scaffold class (figure 3(e-f)).

Given the density of some scaffold classes in the data compared to others (figure 3), more advanced
sampling methods required for ExpandΦ on these classes. For scaffold classes with over 106 members
in the data (mostly 1-ring and 2-ring common scaffolds), resampling validation data from the model
is difficult (table 4.2). Given the uniqueness of sampling based on a category like scaffolds, rather
than pure sampling points in a distribution or Rn, comparisons to generative models’ reconstruction
accuracy are not reasonable.

Figure 3g is an example of a series of compounds which belong to a single scaffold class, but are
sampled with different sidechains. The variety of sidechains while maintaining the single scaffold
core is the basis of a QSAR series.
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Figure 4: An interactive visualization to explore the chemical space. A) Control Panel: Provides
controls dedicated to perform various operations on selected compounds. B) Visualization: Presents
an interactive visualization of the generated compounds based on the operations.

4.3 Interaction with Transformer

The interface provides an interactive visualization to explore the chemical space. It allows the users
to start from a known compound and explore the chemical space by making use of graph operations
like upper, lower, and expand. The interface works with the expressions supported by the SGUser
command line utility and creates the chemical network from the results. The SGUser command
line is available on GitHub.1 In figure 4(A), the first part of the control panel is similar to the
SGUser command line tool. It has options to input an expression which can combine multiple graph
operations and expected sample size. We can continue giving expressions, one after the other, and
the visualization updates by adding new nodes and edges in the network. Alternatively, we can
interactively select a compound from the visualization and use controls representing the various
graph operations to explore the space. Once the user reaches a point where enough compounds are
visualized, the interface allows the user to download the compounds as strings in a json file for further
analysis. The visualization also supports encoding of attributes on nodes. Figure 4(B) shows the
encoding of Wildman-Crippen LogP value on each node.

The interface also supports interactive zoom where users can configure the required behaviour during
zoom. Currently supported options include - zoom to a) simply enlarge the molecular structures,
b) enlarge the molecular structures and highlight a selected sub-structure in all the compounds in
the current view, and c) enlarge the molecular structures and add more new samples in between the
compounds in the view. Other possible interactions include ordering the compounds based on the
visualized attributes on nodes.

5 Conclusion

This paper outlined a set of ordered equivalence classes via molecular scaffolds over the drug-like
chemical space. We utilize seq2seq models to move between scaffolds, or classes of compounds, and
between the scaffold hierarchy and the underlying molecules themselves. These operations ultimately
form a set of algebraic tools for manipulating and navigating the chemical space. This algebra is
expressive—enough to represent algorithms in drug design, such as the principle of fragment-based
drug design or similar property principle of molecular scaffolds. This construction overM offers
a unique take on the enumerability of the chemical space by collapsing the space into scaffold

1anonymous for review
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classes, which can zoomed-in or zoomed-out of. We aim to understand better the distribution of
synthetically accessible drug space and its relation to scaffolds as we hope scaffold classes reduce the
space’s overall size. Future work will expand on the interactive platform we developed for navigating
the space and introduce more concept classes for finer and coarser granularity. We believe that to
accelerate exploring the estimated 1060 drug-like molecules, a navigation strategy besides standard
databases and compound enumeration is needed.
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A Appendix 1: Connection between Lattices and Graphs

We begin with some basic model theoretic definitions but specific to computational chemistry.
Definition A.1 (Molecular Space). We define molecular space asM, the set of all compounds.

12



Assume now there exists a function Scaffold:M ↪→M. This function is explicitly not bijective,
but injective.2

Definition A.2 (Scaffold Space). We define scaffold space as S, the set of all scaffolds ofM,

S = {Scaffold(m) : ∀m ∈M} = Scaffold(M).

Remark A.3. |S| < |M| and S ⊂M as Scaffold is injective.
Definition A.4 (Representation). R is a representation of M if there exists a injective function
r :M ↪→ R.
Remark A.5. The distinction between a molecule and a representation of a molecule is important;
however, for this study assumem ∈M is readily interpretable through a SMILE string representation.
For any m ∈M there exists a smiles string which is not unique but only refers directly to m. There
most certainly is a complication with stereochemistry and enantiomers for which we deal with at a
later time. We give no fuss to this semantic/syntactical distinction later and ignore representation for
the rest of this text.
Definition A.6 (Type). The type of a molecule or scaffold m ∈M is molecule if m 6∈ S, otherwise
m is a scaffold.

In the next section, we will dive into the strange connection between the parameterized duals of the
deterministic functions Scaffold and Predecessor.

A.1 Graphs, Lattices, and Global Structure

Structure theorems are essential to visualizing and working with an object. Those familiar with
group theory will understand the sense immediately—structure theorems allow the particulars to
disappear and the underlying flavor to appear. For molecules, the structure we present give rise a
peculiar distinction between the deterministic join-operation (given a molecule, it’s trivial to see its
scaffold) and the parameterized meet functions. I will plant the idea that the parameterized functions
are creative.
Corollary A.7. (M, Scaffold, ExpandΦ, Scaffold, Predecessor, SuccessorΦ) is isomorphic
to an undirected graph with node setM and edge set

{(e1, Scaffold(e1)) : ∀e1 ∈ (M\ S)} ∪ {(e1, Predecessors(e1)) : ∀e1 ∈ S}.

The following corollary restates this result by using only the parameterized functions.
Corollary A.8. (M, Scaffold, ExpandΦ, Scaffold, Predecessor, SuccessorΦ) is isomorphic
to an undirected graph with node setM and edge set

{(e1, e2) : ∀(e1 ∈ S, e2 ∈ ExpandΦ(e1))} ∪ {(e1, e2) : ∀(e1 ∈ S, e2 ∈ SuccessorΦ(e1))}.

In fact, the duality of these definitions introduce an essential structure overM called a semi-lattice
Definition A.9 (Semi-lattice). A semi-lattice is a partially ordered set where greatest lower bounds
exist.
Definition A.10 (Cone-lattice). A cone-lattice is a lattice, an upper and lower semi-lattice, which is
bounded below.
Corollary A.11. (S, Predecessor) is a bounded lower semilattice and (S, SuccessorΦ) is a
unbounded upper semilattice. (S, Predecessor, SuccessorΦ) is a cone lattice.

Corollary A.11 provides an intuition as to why any enumeration effort ofM will need parameters
if its unwilling to store the whole dataset. Given (S, Predecessor) is the deterministic dual of (S,
SuccessorΦ).
Definition A.12 (Φ-definable). We say a function f :M→M is Φ-definable iff f is a composition
of basic Φ-algebraic functions. Since Φ functions return a set, or distribution, we use the notation ∼
to mean either sample from or “is in.”
Example A.13. Let s ∈ S . Then c ∼ ExpandΦ(s) implies Scaffold(c) = s and c ∈ ExpandΦ(s).

2This should be taken as a weakness, as this assumption is not obvious unless we place some restrictions on
M.
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The following theorem asserts the existence of a Φ-definable function f which will be our navigation
aroundM.

Theorem A.14. Given two compounds c1, c2 ∈M, there exists a function f which is Φ−definable
such that c2 ∼ f(c2)

Proof. Let sc1 and sc2 be the scaffolds of c1 and c2. LetG be the undirected graph of scaffolds. If sc1
and sc2 were not connected thenG would be not be a lattice. Therefore there must exist a path P from
sc1 . Any path can be written in terms of SuccessorΦ or Predecessor. Thus c2 ∼ ExpandΦ(P (c1))
and ExpandΦ(P (Scaffoldc1)) is a Φ-definable function as it is the composition of a Φ-definable
path and ExpandΦ.

In fact, this path P is at most the diameter of S . At first, this is not very informative as the diameter of
the graph is very large depending on what is insideM (are polymers included, for instance). Suppose
though we consider some restriction X ⊂M and relativize SX = {Scaffold(m) : ∀m ∈ X}. In
practice, the bounds are much better.
Lemma A.15 (Relativization). Given a set of compounds X , we can relativize scaffold space to
SX = {Scaffold(m) : ∀m ∈ X} such that SX is a bounded lattice.

Importantly, theorem A.14 holds on SX and X . This is just a sublattice in fact; however, it is easier
to think of it as a relativization problem as we will rarely be interested in the lattice containing
macromolecules which are roughly defined.

One such restriction rule, as a heuristic of course, is commonly known as Lipinski’s rule of five [33].
The rule of five states an orally active drug cannot have more than one violation of the following:

• No more than 5 hydrogen bonds donors
• No more than 10 hydrogen bond acceptors
• A molecular mass less than 500
• An octanol-water partition coefficient (log P) that does not exceed 5

Definition A.16 (Lipinski-like Space). Let L ⊂M be Lipinski-like (chemical) space, where

L = {m : ∀(m ∈M) m meets Lipinski’s rule of five}.

Lemma A.17. Let X ⊂ M where m ∈ X has molecular weight less than 500. Then SX has
diameter less than 16.

Proof. The smallest ring is a four ring carbon member (cyclobutane), which has molecular weight
approx. 56. Therefore the largest scaffold with weight less than 500 has at most 9 rings. This implies
the path length is at most 8 from this large molecule to the center of the graph. This implies at most
the diameter of the graph is 16.

Reachability is directly related with the potential complexity of finding a path. Let c ∈ X as above.
Suppose we are searching for an active drug and c shows no activity. In order to move to a different
drug, c′, at most 8 applications of Predecessor are possible with 8 applications of SuccessorΦ.
In particular, we can say within 8 applications of SuccessorΦ from the origin ∅ we can reach any
molecule in X .
The difficulty with applying SuccessorΦ lies in its indeterminacy—it is a generative function that
so far has zero ordering of the molecules which belong to that scaffold class. For example, suppose
each scaffold branches at most 8 times. Then there are 88 possible paths to explore. In reality, the
branching is much larger than 8, and thus we are dealing with x8.
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