Robert Rannie Northern lllinois University - DeKalb, IL
Texas Instruments - Dallas, TX

Milica Kozomara

Mainframe Operating
Systems “Boot Camp”

Program Interrupts (You Want An Exit With That?)

Part 4

Session #2898
SHARE 112 in Austin, March 2009

“Tell ‘em what you’re gonna tell ‘em”

® The Program Mask (PM)

® Program Check FLIH (PC-FLIH)

e SVC |4 (Type 3) - SPIE

® Rules for Operation in a SPIE Exit Routine
® 'Portia' Modifications to SVC 3

Our Agenda for the Week

#2895 - Part |:The General Purpose Computer and
Interrupts

#2896 - Part 2: From IPL to Running Programs
#2897 - Part 3: SVCs and More SVCs

#2898 - Part 4: Program Interrupts
(You Want An Exit With That?)

#2899 - Part 5: FLIH: 1/O INTERRUPTS

#2894 - Mainframe Operating System Boot Camp:
Highlights

The Program Mask (PM)

Program-Interruption Codes Under Program Mask Control

e SOC8-0008 Fixed-point overflow exception
® SOCA - 000A Decimal-overflow exception
e SOCD - 000D Exponent-underflow exception
e SOCE - 000E Significance exception

Mask bit = 0: Exception will Not cause an Interrupt

Mask bit = |: Exception will cause an Interrupt
Channel Masks |E[PSW key | c|m|w|p Interruption Code
0 78 12 16 31
ILC [CC Program Instruction Address
mask
32 34 36 40 63

The Program Mask (PM)

More About Program Mask
® To determine current state of PM
e BAL/R
e |PM (in MVS)
® To set PM (from Problem state)
e SPM

Program Check FLIH (PC - FLIH)

® Save the ‘Essence’ of the Interrupted Program
® Perform other ‘housekeeping’

® Can provide an Exit Routine for selected
Interrupts

® Test for SPIE environment

® Test interrupt that just occurred for SPIE
exit routine

Program Check FLIH (PC - FLIH)

No SPIE Exists (or Applies)
Use SVC 13 to abend program causing PC

® Provide input parameter in R

e X’800Cn000’
n - (hex) type of Program Interrupt

® | oad A(BRABEND) from CVTBRABN into
RI5

e BR RI5

Program Check FLIH (PC - FLIH)

No SPIE Exists (or Applies)

Note: The BRABEND code need not be a
separate module as is done in SOS.
This code may simply be a part of the PC-FLIH.

e BRABEND is equivalent to scheduling and
dispatching an SVRB for the execution of the
SvC 13.

® Rather than duplicating the code that you
wrote in the SVC FLIH in order to
accomplish this, you should do the following:

Program Check FLIH (PC - FLIH)

No SPIE Exists (or Applies)

® |n BRABEND:

® Load A(SVC I3 module) from A(SVCTABLE)
+13*8 into R6

® Get A(‘Type Other’ code in SVC-FLIH) from
CVTSSVRB

® With R6 and RI (interrupt code
X’800Cn000’) set, branch into “Type Other’
code in SVC-FLIH.

Program Check FLIH (PC - FLIH)

No SPIE Exists (or Applies)

® May enter “Type Other’ code from
® the first section of the SVC-FLIH
e BRABEND
® |abel it will now be a common entry point

® Assemble (not store) A(new label) at
CVTSSVRB

® Reestablish Addressability at “Type Other’
code

Program Check FLIH (PC - FLIH)

® |f no SPIE environment exists, TCB+4
(TCBPIE) will be zero

® |f there is a SPIE environment, there will be
three Control Blocks

® SCA - Spie Control Area (4 byte in SOS)

® PIE - Program Interrupt Element
(8 Full Words)

® PICA - Program Interrupt Control Area
(6 bytes)

Program Check FLIH (PC - FLIH)

SPIE environment Exists

TCB+4 Points to the SCA
(TCB & SCA in memory protected from user)
SCA+0 Points to the PIE
(In user accessible memory)
PIE+0 Points to the PICA
(In user accessible memory)

Program Check FLIH (PC - FLIH)

TCB

SPIE - Required Control Blocks

PIE

TCBRB X'00'

InEx Flag AL3(PICA)

TCBPIE

XIOPM' AL3(SCA) IST HALF PSW

2ND HALF PSW

GPR 14

SCA GPRIS

PICA

X00' | Al3(PIE) GPRO

In Ex Flag

GPRI 0 |PM AL3(Exit Routine) SOC FLGs

GPR2 [

Program Check FLIH (PC - FLIH)

SPIE environment Exists

® TCB and PICA exist for duration of “task”

Program Check FLIH (PC - FLIH)

SPIE environment Exists - PC-FLIH Program Logic

® |f there is a SPIE, the chain of control blocks
must exist and contain correct values.

® If an error is encountered at any point ABEND
the program via BRABEND.

e SVC |4, when called to create a SPIE
environment, dynamically acquires an SCA
(protected memory) and a PIE (user accessible

memory)

® |[f the SPIE (and all requisite CBs) exists and is
applicable to the type of interrupt that
occurred, the PC-FLIH will dispatch the
program into its Exit Routine.

Program Check FLIH (PC - FLIH)

SPIE environment Exists - PC-FLIH Program Logic, Step |

TCB

TCBRB

TCBPIE
X'OPM' AL3(SCA)

SCA

X'00'

In Ex Flag AL3(PIE)

® Get TCBPIE from TCB of
interrupted program

e [fTCBPIE is zero, ABEND
® Get A(SCA) from TCBPIE
e |f SCA+0 is zero, OR

e if InEx Flag = |, ABEND
® GetA(PIE) from SCA

Program Check FLIH (PC - FLIH)

SPIE environment Exists - PC-FLIH Program Logic, Step |
PIE e |f PIE+0 is zero, OR

- if PIE InEx Flag = |, ABEND

InEx Flag AL3(PICA)

® Get A(PICA) from PIE

IST HALF PSW

e |f A(Exit Routine) is zero, OR

2ND HALF PSW

if ‘SOC FLGs’ is zero,ABEND

GPR14

GPRI15

GPRO PICA

GPRI o |pM AL3(Exit Routine) SOC FLGs

GPR2

Program Check FLIH (PC - FLIH)

SPIE environment Exists - PC-FLIH Program Logic, Step 2

® At this point, the CB chain has been validated.

® Test the type of PC interrupt that occurred for
SPIE support:

® Supported SOCs are indicated by B’'l’ in
corresponding field in PICA

0 |PM AL3(Exit Routine) SOC FLGs

® |f this interrupt type is not specified by the
PICA,ABEND

Program Check FLIH (PC - FLIH)

SPIE environment Exists - PC-FLIH Program Logic, Step 3

® To send the program to its Exit Routine

® Move the contents of R14 - R2 from
TCBGRS to PIE+12

® Move the 8 bytes of PSW from RBOPSW
into PIE+4

® Store A(Portia SVC 3) into TCBGRS+14*4

Program Check FLIH (PC - FLIH)

SPIE environment Exists - PC-FLIH Program Logic, Step 3
® To send the program to its Exit Routine
e Store A(Exit Routine) into TCBGRS+15%4
e Store AL3(Exit Routine) into RBOPSW+5
e Store A(PIE) into TCBGRS+ %4
® Set InEx Flags at SCA+0 and PIE+0 to B’

20

Program Check FLIH (PC - FLIH) SVC 14 (Type 3) - SPIE

SPIE environment Exists - PC-FLIH Program Logic, Step 4 Overview

® Branch to the dispatcher e Entry: RI=A(PICA)

® Exit: RI=Address of previous PICA (or zero if
there was none)

® SPIE performs one of three options
® Create a SPIE Environment
® Modify a SPIE Environment

® Cancel a SPIE Environment

21 22

SVC 14 (Type 3) - SPIE SVC 14 (Type 3) - SPIE
Overview Overview
® Test for zero in three locations o |f ANY of these are zero, that constitutes a
e A(PICA)inRI request to

o A(Exit Routine) in Pica ® Cancel a SPIE Environment (if one exists)

e 15 Flags for SOCI-SOCF in PICA ® lgnore the SPIE request

(if no Environment exists)

23 24

SVC 14 (Type 3) - SPIE

Overview

® The first step for any of the three SPIE options:

e |f TCBPIE is zero, no SPIE Environment
exists

® If it is non-zero, a SPIE Environment
(may) exist TCB

TCBRB

TCBPIE
X'OPM' AL3(SCA)

SVC 14 (Type 3) - SPIE

Create a SPIE environment - Program Logic

® Move (MVN) current Program Mask (PM) from
PRB PSWV to the right hit of the byte at TCBPIE
+0

® Move (MVN) the PM in the right hit of PICA+0
into the PM field of the PRB PSW

® Put a return code of zero (no previous SPIE
Environment) into R1 for return to the
program that issued SVC 14

25

SVC 14 (Type 3) - SPIE

Create a SPIE environment - Program Logic

Obtain an SCA (SOS on TCB at TCBDMSCA)
Store A(SCA) into TCBPIE + |

Store A(PIE) into SCA+]

Set SCA+0 to X'00'

Store A(PICA) into PIE+

Set PIE+0 to X'00'

27

26

SVC 14 (Type 3) - SPIE

Modify a SPIE environment - Program Logic

Confirm that a valid SPIE Environment exists
by checking the chain of CBs

If any items are incorrect, XOPC 25 (force
abend)

® NON-zero TCBPIE contains A(SCA)

® NON-zero SCA contains A(PIE), and bit 0
is zero

® NON-zero PIE contains A(PICA), and bit 0
is zero

28

SVC 14 (Type 3) - SPIE

Modify a SPIE environment - Program Logic

Save A(OLD! PICA) from PIE+|
Move A(NEW! PICA) into PIE+|

Set PIE+0 to O

Move PM from right hit of NEW! PICA+0 into
PM field of PRB PSW

Put the address of the previous saved A(OLD!

PICA) into Reg. | for return to the program
that issued SVC 14

SVC 14 (Type 3) - SPIE

Cancel a SPIE environment - Program Logic

When one of the “three circumstances” signals
that a SPIE Environment is to be canceled, the
first test is of the TCBPIE to see if a SPIE
Environment exists

If it does not, return a zero in R

29

SVC 14 (Type 3) - SPIE

Modify a SPIE environment - Program Logic

Note: A request to Modify a SPIE Environment
does NOT call for you to change the (original)
PSW PM that is stored in the TCBPIE+0

31

30

SVC 14 (Type 3) - SPIE

Cancel a SPIE environment - Program Logic

If a SPIE Environment does exist

® Move the saved PSW PM from TCBPIE+0
into the PM field of the PRB PSW

® Obtain A(SCA) and clear the TCBPIE to
zero

® Obtain A(PIE) and clear the SCA
(TCBDMSCA) to zero

32

SVC 14 (Type 3) - SPIE

Cancel a SPIE environment - Program Logic

e |f a SPIE Environment does exist

e Save A(PICA) from PIE+ | and zero the first
four bytes of the PIE

® Put A(PICA) into RI for return from
SvC 14

Rules for Operation in a SPIE Exit Routine

Overview

® On entry to an Exit Routine (ER)
® RI5 is base register
® RI14is A(Portia SVC 3)
e Rl isA(PIE)

33

Rules for Operation in a SPIE Exit Routine

Overview
PIE ® On entry to an Exit Routine (ER)
X00' | Al3(picA) ® The PSWV as it was at the time

InEx Flag

of the PC interrupt is in PIE+4

IST HALF PSW

JND HALF PSW ® R[4 - R2 as they were at the

e time of the PC interrupt in
PIE+12

GPRI5

GPRO ® R3 through R13 are as they

GPRI were at the time of the PC

. interrupt

35

34

Rules for Operation in a SPIE Exit Routine

Overview

® On entry to the ER you may STM
RO,RI5,EXITSAVE

® |f that is done you must LM R3,R14,EXITSAVE
+3*4 before BR R14

® Changes to R14 - R2 that you want to be in
effect on return from the ER should be made
to the register areas in the PIE

® Make any desired changes to R3 - R13 at the
appropriate location in EXITSAVE

36

'Portia' Modifications to SVC 3

Overview

® Create a 'Portia’ SVC 3 located IMMEDIATELY
before the entry point of the PC-FLIH

® Modify SVC 3 to for the 'Portia’ concept

® On entry to SVC 3, test whether this is a
'Portia’ entry or whether this is a regular
entry

® To do this, determine if the SVC 3
instruction was the one located

immediately before the PC-FLIH

'Portia' Modifications to SVC 3

Overview

® If this is not a 'Portia’ entry
® Proceed with standard SVC 3 code
® |[f this is a 'Portia’ entry

® Run the CB chain from the TCB to get
A(SCA) and A(PIE)

® Do NOT assume that RI points to the PIE!

37

'Portia' Modifications to SVC 3

Program Logic

e [f SCA InEx bit = 0, XOPC 25
Otherwise, set it to 0 and set the PIE InEx bit
to 0

® R3-RI3 are now in TCBGRS as they were at
the time of the BR R14 from ER

'Portia' Modifications to SVC 3

Program Logic
® Move R14 - R2 from PIE to TCBGRS

® Move the second half of the PSWV from the PIE
to the RBOPSW+4

o Exit the SVC 3 module via BR R14 and return
to the SVC-FLIH

38

39

40

'Portia' Modifications to SVC 3

Remember what happens in the SVC-FLIH
immediately upon return from a Type-1 SVC
module? The SVC-FLIH moves RI5-R1 into the
corresponding TCBGRS

It is therefore, IMPERATIVE, that on exit from
SVC 3 the contents of RI5-R1| are the SAME as
the contents of those register locations in
TCBGRS!

'Portia' Modifications to SVC 3

Actual Program Logic

Move R14 - R2 from PIE to TCBGRS

Move the second half of the PSW from the PIE
to the RBOPSW+4

Load RI5 and RO - Rl from TCBGRS

Exit the SVC 3 module via BR R14 and return
to the SVC-FLIH

41

Sneak Preview

Part 5: FLIH: /O Interrupts
Priority: It's Just Swiss & American
So that's why we need a Wait TCB/RB
I/O,All it is: Get it going; Get it finished
But, It's asynchronous: Can you catch it?

Partial solution: More (and better) CBs

42

Questions

rrannie@cs.niu.edu
m-kozomara@ti.com
www.cs.niu.edu/~rrannie

43

44

