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Our Agenda for the Week

#2895 - Part 1: The General Purpose Computer and 
! ! ! Interrupts

#2896 - Part 2: From IPL to Running Programs

#2897 - Part 3: SVCs and More SVCs

#2898 - Part 4: Program Interrupts 
! ! ! (You Want An Exit With That?)

#2899 - Part 5: FLIH: I/O INTERRUPTS

#2894 - Mainframe Operating System Boot Camp: 
! ! ! Highlights
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“Tell ‘em what you’re gonna tell ‘em”

• The Program Mask (PM)  

• Program Check FLIH (PC-FLIH)

• SVC 14 (Type 3) - SPIE 

• Rules for Operation in a SPIE Exit Routine

• 'Portia' Modifications to SVC 3
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• SOC8 - 0008   Fixed-point overflow exception

• SOCA - 000A   Decimal-overflow exception

• SOCD - 000D   Exponent-underflow exception

• SOCE - 000E   Significance exception

Mask bit = 0:    Exception will Not cause an Interrupt

Mask bit = 1:    Exception will cause an Interrupt

Program-Interruption Codes Under Program Mask Control

Channel Masks E PSW key c m w p Interruption Code

0 7 8 12 16 31

ILC CC
Program 

mask
Instruction Address

32 34 36 40 63

The Program Mask (PM)
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More About Program Mask

The Program Mask (PM)

• To determine current state of PM

• BAL/R

• IPM (in MVS)

• To set PM (from Problem state)

• SPM
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Program Check FLIH (PC - FLIH)

• Save the ‘Essence’ of the Interrupted Program

• Perform other ‘housekeeping’

• Can provide an Exit Routine for selected 
Interrupts

• Test for SPIE environment

• Test interrupt that just occurred for SPIE 
exit routine
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No SPIE Exists (or Applies)

Program Check FLIH (PC - FLIH)

Use SVC 13 to abend program causing PC

• Provide input parameter in R1 

• X’800Cn000’ ! !
n - (hex) type of Program Interrupt

• Load A(BRABEND) from CVTBRABN into 
R15

• BR    R15
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No SPIE Exists (or Applies)

Program Check FLIH (PC - FLIH)

Note: !! The BRABEND code need not be a 
separate module as is done in SOS.  
This code may simply be a part of the PC-FLIH.

• BRABEND is equivalent to scheduling  and 
dispatching an SVRB for the execution of the 
SVC 13. 

• Rather than duplicating the code that you 
wrote in the SVC FLIH in order to 
accomplish this, you should do the following: 
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No SPIE Exists (or Applies)

Program Check FLIH (PC - FLIH)

• In BRABEND:

• Load A(SVC 13 module) from A(SVCTABLE)
+13*8 into R6

• Get A(‘Type Other’ code in SVC-FLIH) from 
CVTSSVRB

• With R6 and R1 (interrupt code 
X’800Cn000’) set, branch into ‘Type Other’ 
code in SVC-FLIH.
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No SPIE Exists (or Applies)

Program Check FLIH (PC - FLIH)

• May enter ‘Type Other’ code from

• the first section of the SVC-FLIH

• BRABEND

• Label it will now be a common entry point

• Assemble (not store) A(new label) at 
CVTSSVRB

• Reestablish Addressability at ‘Type Other’ 
code
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Program Check FLIH (PC - FLIH)

• If no SPIE environment exists, TCB+4 
(TCBPIE) will be zero

• If there is a SPIE environment, there will be 
three Control Blocks

• SCA - Spie Control Area (4 byte in SOS)

• PIE - Program Interrupt Element 
(8 Full Words)

• PICA - Program Interrupt Control Area 
(6 bytes)
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TCB+4
Points to the SCA 

(TCB & SCA in memory protected from user)

SCA+0   
Points to the PIE

(In user accessible memory)

PIE+0 
Points to the PICA

(In user accessible memory)

SPIE environment Exists

Program Check FLIH (PC - FLIH)
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X'00'
In Ex Flag

AL3(PIE)

SCA

SPIE - Required Control Blocks

TCBRB

TCBPIE
X'0PM' AL3(SCA)

TCB

X'00'
InEx Flag

AL3(PICA)

1ST   HALF   PSW

2ND   HALF   PSW 

GPR14

GPR15

GPR0

GPR1

GPR2

PIE

0 PM AL3( Exit Routine) SOC FLGs

PICA

Program Check FLIH (PC - FLIH)
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SPIE environment Exists

Program Check FLIH (PC - FLIH)

• TCB and PICA exist for duration of “task”

• SVC 14, when called to create a SPIE 
environment, dynamically acquires an SCA 
(protected memory) and a PIE (user accessible 
memory)

• If the SPIE (and all requisite CBs) exists and is 
applicable to the type of interrupt that 
occurred, the PC-FLIH will dispatch the 
program into its Exit Routine.
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SPIE environment Exists - PC-FLIH Program Logic

Program Check FLIH (PC - FLIH)

• If there is a SPIE, the chain of control blocks 
must exist and contain correct values. 

• If an error is encountered at any point ABEND 
the program via BRABEND. 
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• Get TCBPIE from TCB of 
interrupted program

• If TCBPIE is zero,  ABEND

• Get A(SCA) from TCBPIE

• If SCA+0 is zero, OR

• if InEx Flag = 1, ABEND

• Get A(PIE) from SCA

SPIE environment Exists - PC-FLIH Program Logic, Step 1

Program Check FLIH (PC - FLIH)

X'00'
In Ex Flag

AL3(PIE)

SCA

TCBRB

TCBPIE
X'0PM' AL3(SCA)

TCB
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• If PIE+0 is zero, OR
! if PIE InEx Flag = 1, ABEND

• Get A(PICA) from PIE

• If A(Exit Routine) is zero, OR
! if ‘S0C FLGs’ is zero, ABEND

SPIE environment Exists - PC-FLIH Program Logic, Step 1

Program Check FLIH (PC - FLIH)

X'00'
InEx Flag

AL3(PICA)

1ST   HALF   PSW

2ND   HALF   PSW 

GPR14

GPR15

GPR0

GPR1

GPR2

PIE

0 PM AL3( Exit Routine) SOC FLGs

PICA
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SPIE environment Exists - PC-FLIH Program Logic, Step 2

Program Check FLIH (PC - FLIH)

• At this point, the CB chain has been validated.

• Test the type of PC interrupt that occurred for 
SPIE support:

• Supported S0Cs are indicated by B’1’ in 
corresponding field in PICA

• If this interrupt type is not specified by the 
PICA, ABEND 

0 PM AL3( Exit Routine) SOC FLGs
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SPIE environment Exists - PC-FLIH Program Logic, Step 3

Program Check FLIH (PC - FLIH)

• To send the program to its Exit Routine 

• Move the contents of R14 - R2 from 
TCBGRS to PIE+12

• Move the 8 bytes of PSW from RBOPSW 
into PIE+4

• Store A(Portia SVC 3) into TCBGRS+14*4
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SPIE environment Exists - PC-FLIH Program Logic, Step 3

Program Check FLIH (PC - FLIH)

• To send the program to its Exit Routine 

• Store A(Exit Routine) into TCBGRS+15*4

• Store AL3(Exit Routine) into RBOPSW+5 

• Store A(PIE) into TCBGRS+1*4

• Set InEx Flags at SCA+0 and PIE+0 to B’1’
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SPIE environment Exists - PC-FLIH Program Logic, Step 4

Program Check FLIH (PC - FLIH)

• Branch to the dispatcher
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SVC 14 (Type 3) - SPIE

Overview

• Entry: ! R1= A(PICA) 

• Exit: !R1= Address of previous PICA (or zero if 
there was none) 

• SPIE performs one of three options

• Create a SPIE Environment 

• Modify a SPIE Environment 

• Cancel a SPIE Environment 
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Overview

SVC 14 (Type 3) - SPIE

• Test for zero in three locations

• A(PICA) in R1

• A(Exit Routine) in Pica

• 15 Flags for S0C1-S0CF in PICA
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Overview

SVC 14 (Type 3) - SPIE

• If ANY of these are zero, that constitutes a 
request to 

• Cancel a SPIE Environment (if one exists) 

• Ignore the SPIE request 
(if no Environment exists) 
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• The first step for any of the three SPIE options:

• If TCBPIE is zero, no SPIE Environment 
exists

• If it is non-zero, a SPIE Environment 
(may) exist

Overview

SVC 14 (Type 3) - SPIE

TCBRB

TCBPIE
X'0PM' AL3(SCA)

TCB
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Create a SPIE environment - Program Logic

SVC 14 (Type 3) - SPIE

• Obtain an SCA (SOS on TCB at TCBDMSCA) 

• Store A(SCA) into TCBPIE + 1

• Store A(PIE) into SCA+1

• Set SCA+0 to X'00'

• Store A(PICA) into PIE+1

• Set PIE+0 to X'00'
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Create a SPIE environment - Program Logic

SVC 14 (Type 3) - SPIE

• Move (MVN) current Program Mask (PM) from 
PRB PSW to the right hit of the byte at TCBPIE
+0

• Move (MVN) the PM in the right hit of PICA+0 
into the PM field of the PRB PSW 

• Put a return code of zero (no previous SPIE 
Environment) into R1 for return to the 
program that issued SVC 14
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Modify a SPIE environment - Program Logic

SVC 14 (Type 3) - SPIE

• Confirm that a valid SPIE Environment exists 
by checking the chain of CBs
If any items are incorrect, XOPC 25 (force 
abend)

• NON-zero TCBPIE contains A(SCA) 

• NON-zero SCA contains A(PIE), and bit 0 
is zero

• NON-zero PIE contains A(PICA), and bit 0 
is zero
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Modify a SPIE environment - Program Logic

SVC 14 (Type 3) - SPIE

• Save A(OLD! PICA) from PIE+1 
Move A(NEW! PICA) into PIE+1

• Set PIE+0 to 0

• Move PM from right hit of NEW! PICA+0 into 
PM field of PRB PSW

• Put the address of the previous saved A(OLD! 
PICA) into Reg. 1 for return to the program 
that issued SVC 14
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Modify a SPIE environment - Program Logic

SVC 14 (Type 3) - SPIE

Note: ! A request to Modify a SPIE Environment 
does NOT call for you to change the (original) 
PSW PM that is stored in the TCBPIE+0
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Cancel a SPIE environment - Program Logic

SVC 14 (Type 3) - SPIE

• When one of the “three circumstances” signals 
that a SPIE Environment is to be canceled, the 
first test is of the TCBPIE to see if a SPIE 
Environment exists

• If it does not, return a zero in R1 
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Cancel a SPIE environment - Program Logic

SVC 14 (Type 3) - SPIE

• If a SPIE Environment does exist

• Move the saved PSW PM from TCBPIE+0 
into the PM field of the PRB PSW

• Obtain A(SCA) and clear the TCBPIE to 
zero

• Obtain A(PIE) and clear the SCA 
(TCBDMSCA) to zero
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Cancel a SPIE environment - Program Logic

SVC 14 (Type 3) - SPIE

• If a SPIE Environment does exist

• Save A(PICA) from PIE+1 and zero the first 
four bytes of the PIE

• Put A(PICA) into R1 for return from 
SVC 14
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Rules for Operation in a SPIE Exit Routine

Overview

• On entry to an Exit Routine (ER) 

• R15 is base register

• R14 is A(Portia SVC 3)

• R1 is A(PIE) 
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Overview

Rules for Operation in a SPIE Exit Routine

• On entry to an Exit Routine (ER) 

• The PSW as it was at the time 
of the PC interrupt is in PIE+4

• R14 - R2 as they were at the 
time of the PC interrupt in 
PIE+12

• R3 through R13 are as they 
were at the time of the PC 
interrupt

X'00'
InEx Flag

AL3(PICA)

1ST   HALF   PSW

2ND   HALF   PSW 

GPR14

GPR15

GPR0

GPR1

GPR2

PIE
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Overview

Rules for Operation in a SPIE Exit Routine

• On entry to the ER you may STM 
R0,R15,EXITSAVE

• If that is done you must LM R3,R14,EXITSAVE
+3*4 before BR R14

• Changes to R14 - R2 that you want to be in 
effect on return from the ER should be made 
to the register areas in the PIE

• Make any desired changes to R3 - R13 at the 
appropriate location in EXITSAVE
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'Portia' Modifications to SVC 3

Overview

• Create a 'Portia’ SVC 3 located IMMEDIATELY 
before the entry point of the PC-FLIH

• Modify SVC 3 to for the 'Portia' concept

• On entry to SVC 3, test whether this is a 
'Portia' entry or whether this is a regular 
entry 

• To do this, determine if the SVC 3 
instruction was the one located 
immediately before the PC-FLIH
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Overview

'Portia' Modifications to SVC 3

• If this is not a 'Portia' entry

• Proceed with standard SVC 3 code

• If this is a 'Portia' entry

• Run the CB chain from the TCB to get 
A(SCA) and A(PIE)

• Do NOT assume that R1 points to the PIE! 
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Program Logic

'Portia' Modifications to SVC 3

• If SCA InEx bit = 0, XOPC 25
Otherwise, set it to 0 and set the PIE InEx bit 
to 0

• R3-R13 are now in TCBGRS as they were at 
the time of the BR R14 from ER
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Program Logic

'Portia' Modifications to SVC 3

• Move R14 - R2 from PIE to TCBGRS 

• Move the second half of the PSW from the PIE 
to the RBOPSW+4

• Exit the SVC 3 module via BR R14 and return 
to the SVC-FLIH
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'Portia' Modifications to SVC 3

• Remember what happens in the SVC-FLIH 
immediately upon return from a Type-1 SVC 
module? The SVC-FLIH moves R15-R1 into the 
corresponding TCBGRS

• It is therefore, IMPERATIVE, that on exit from 
SVC 3 the contents of R15-R1 are the SAME as 
the contents of those register locations in 
TCBGRS! 
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Actual Program Logic

'Portia' Modifications to SVC 3

• Move R14 - R2 from PIE to TCBGRS 

• Move the second half of the PSW from the PIE 
to the RBOPSW+4

• Load R15 and R0 - R1 from TCBGRS

• Exit the SVC 3 module via BR R14 and return 
to the SVC-FLIH
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Part 5:  FLIH: I/O Interrupts

Sneak Preview

• Priority:  It's Just Swiss & American

• So that's why we need a Wait TCB/RB

• I/O, All it is: Get it going; Get it finished

• But, It's asynchronous:  Can you catch it?

• Partial solution:  More (and better) CBs

43

Questions

www.cs.niu.edu/~rrannie

rrannie@cs.niu.edu

m-kozomara@ti.com
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