
Mainframe Operating
Systems “Boot Camp”
Program Interrupts (You Want An Exit With That?)

Part 4

Robert Rannie
Milica Kozomara

Northern Illinois University - DeKalb, IL
Texas Instruments - Dallas, TX

Session #2898
SHARE 112 in Austin, March 2009

1

Our Agenda for the Week

#2895 - Part 1: The General Purpose Computer and
! ! ! Interrupts

#2896 - Part 2: From IPL to Running Programs

#2897 - Part 3: SVCs and More SVCs

#2898 - Part 4: Program Interrupts
! ! ! (You Want An Exit With That?)

#2899 - Part 5: FLIH: I/O INTERRUPTS

#2894 - Mainframe Operating System Boot Camp:
! ! ! Highlights

2

“Tell ‘em what you’re gonna tell ‘em”

• The Program Mask (PM)

• Program Check FLIH (PC-FLIH)

• SVC 14 (Type 3) - SPIE

• Rules for Operation in a SPIE Exit Routine

• 'Portia' Modifications to SVC 3

3

• SOC8 - 0008 Fixed-point overflow exception

• SOCA - 000A Decimal-overflow exception

• SOCD - 000D Exponent-underflow exception

• SOCE - 000E Significance exception

Mask bit = 0: Exception will Not cause an Interrupt

Mask bit = 1: Exception will cause an Interrupt

Program-Interruption Codes Under Program Mask Control

Channel Masks E PSW key c m w p Interruption Code

0 7 8 12 16 31

ILC CC
Program

mask
Instruction Address

32 34 36 40 63

The Program Mask (PM)

4

More About Program Mask

The Program Mask (PM)

• To determine current state of PM

• BAL/R

• IPM (in MVS)

• To set PM (from Problem state)

• SPM

5

Program Check FLIH (PC - FLIH)

• Save the ‘Essence’ of the Interrupted Program

• Perform other ‘housekeeping’

• Can provide an Exit Routine for selected
Interrupts

• Test for SPIE environment

• Test interrupt that just occurred for SPIE
exit routine

6

No SPIE Exists (or Applies)

Program Check FLIH (PC - FLIH)

Use SVC 13 to abend program causing PC

• Provide input parameter in R1

• X’800Cn000’ ! !
n - (hex) type of Program Interrupt

• Load A(BRABEND) from CVTBRABN into
R15

• BR R15

7

No SPIE Exists (or Applies)

Program Check FLIH (PC - FLIH)

Note: !! The BRABEND code need not be a
separate module as is done in SOS.
This code may simply be a part of the PC-FLIH.

• BRABEND is equivalent to scheduling and
dispatching an SVRB for the execution of the
SVC 13.

• Rather than duplicating the code that you
wrote in the SVC FLIH in order to
accomplish this, you should do the following:

8

No SPIE Exists (or Applies)

Program Check FLIH (PC - FLIH)

• In BRABEND:

• Load A(SVC 13 module) from A(SVCTABLE)
+13*8 into R6

• Get A(‘Type Other’ code in SVC-FLIH) from
CVTSSVRB

• With R6 and R1 (interrupt code
X’800Cn000’) set, branch into ‘Type Other’
code in SVC-FLIH.

9

No SPIE Exists (or Applies)

Program Check FLIH (PC - FLIH)

• May enter ‘Type Other’ code from

• the first section of the SVC-FLIH

• BRABEND

• Label it will now be a common entry point

• Assemble (not store) A(new label) at
CVTSSVRB

• Reestablish Addressability at ‘Type Other’
code

10

Program Check FLIH (PC - FLIH)

• If no SPIE environment exists, TCB+4
(TCBPIE) will be zero

• If there is a SPIE environment, there will be
three Control Blocks

• SCA - Spie Control Area (4 byte in SOS)

• PIE - Program Interrupt Element
(8 Full Words)

• PICA - Program Interrupt Control Area
(6 bytes)

11

TCB+4
Points to the SCA

(TCB & SCA in memory protected from user)

SCA+0
Points to the PIE

(In user accessible memory)

PIE+0
Points to the PICA

(In user accessible memory)

SPIE environment Exists

Program Check FLIH (PC - FLIH)

12

X'00'
In Ex Flag

AL3(PIE)

SCA

SPIE - Required Control Blocks

TCBRB

TCBPIE
X'0PM' AL3(SCA)

TCB

X'00'
InEx Flag

AL3(PICA)

1ST HALF PSW

2ND HALF PSW

GPR14

GPR15

GPR0

GPR1

GPR2

PIE

0 PM AL3(Exit Routine) SOC FLGs

PICA

Program Check FLIH (PC - FLIH)

13

SPIE environment Exists

Program Check FLIH (PC - FLIH)

• TCB and PICA exist for duration of “task”

• SVC 14, when called to create a SPIE
environment, dynamically acquires an SCA
(protected memory) and a PIE (user accessible
memory)

• If the SPIE (and all requisite CBs) exists and is
applicable to the type of interrupt that
occurred, the PC-FLIH will dispatch the
program into its Exit Routine.

14

SPIE environment Exists - PC-FLIH Program Logic

Program Check FLIH (PC - FLIH)

• If there is a SPIE, the chain of control blocks
must exist and contain correct values.

• If an error is encountered at any point ABEND
the program via BRABEND.

15

• Get TCBPIE from TCB of
interrupted program

• If TCBPIE is zero, ABEND

• Get A(SCA) from TCBPIE

• If SCA+0 is zero, OR

• if InEx Flag = 1, ABEND

• Get A(PIE) from SCA

SPIE environment Exists - PC-FLIH Program Logic, Step 1

Program Check FLIH (PC - FLIH)

X'00'
In Ex Flag

AL3(PIE)

SCA

TCBRB

TCBPIE
X'0PM' AL3(SCA)

TCB

16

• If PIE+0 is zero, OR
! if PIE InEx Flag = 1, ABEND

• Get A(PICA) from PIE

• If A(Exit Routine) is zero, OR
! if ‘S0C FLGs’ is zero, ABEND

SPIE environment Exists - PC-FLIH Program Logic, Step 1

Program Check FLIH (PC - FLIH)

X'00'
InEx Flag

AL3(PICA)

1ST HALF PSW

2ND HALF PSW

GPR14

GPR15

GPR0

GPR1

GPR2

PIE

0 PM AL3(Exit Routine) SOC FLGs

PICA

17

SPIE environment Exists - PC-FLIH Program Logic, Step 2

Program Check FLIH (PC - FLIH)

• At this point, the CB chain has been validated.

• Test the type of PC interrupt that occurred for
SPIE support:

• Supported S0Cs are indicated by B’1’ in
corresponding field in PICA

• If this interrupt type is not specified by the
PICA, ABEND

0 PM AL3(Exit Routine) SOC FLGs

18

SPIE environment Exists - PC-FLIH Program Logic, Step 3

Program Check FLIH (PC - FLIH)

• To send the program to its Exit Routine

• Move the contents of R14 - R2 from
TCBGRS to PIE+12

• Move the 8 bytes of PSW from RBOPSW
into PIE+4

• Store A(Portia SVC 3) into TCBGRS+14*4

19

SPIE environment Exists - PC-FLIH Program Logic, Step 3

Program Check FLIH (PC - FLIH)

• To send the program to its Exit Routine

• Store A(Exit Routine) into TCBGRS+15*4

• Store AL3(Exit Routine) into RBOPSW+5

• Store A(PIE) into TCBGRS+1*4

• Set InEx Flags at SCA+0 and PIE+0 to B’1’

20

SPIE environment Exists - PC-FLIH Program Logic, Step 4

Program Check FLIH (PC - FLIH)

• Branch to the dispatcher

21

SVC 14 (Type 3) - SPIE

Overview

• Entry: ! R1= A(PICA)

• Exit: !R1= Address of previous PICA (or zero if
there was none)

• SPIE performs one of three options

• Create a SPIE Environment

• Modify a SPIE Environment

• Cancel a SPIE Environment

22

Overview

SVC 14 (Type 3) - SPIE

• Test for zero in three locations

• A(PICA) in R1

• A(Exit Routine) in Pica

• 15 Flags for S0C1-S0CF in PICA

23

Overview

SVC 14 (Type 3) - SPIE

• If ANY of these are zero, that constitutes a
request to

• Cancel a SPIE Environment (if one exists)

• Ignore the SPIE request
(if no Environment exists)

24

• The first step for any of the three SPIE options:

• If TCBPIE is zero, no SPIE Environment
exists

• If it is non-zero, a SPIE Environment
(may) exist

Overview

SVC 14 (Type 3) - SPIE

TCBRB

TCBPIE
X'0PM' AL3(SCA)

TCB

25

Create a SPIE environment - Program Logic

SVC 14 (Type 3) - SPIE

• Obtain an SCA (SOS on TCB at TCBDMSCA)

• Store A(SCA) into TCBPIE + 1

• Store A(PIE) into SCA+1

• Set SCA+0 to X'00'

• Store A(PICA) into PIE+1

• Set PIE+0 to X'00'

26

Create a SPIE environment - Program Logic

SVC 14 (Type 3) - SPIE

• Move (MVN) current Program Mask (PM) from
PRB PSW to the right hit of the byte at TCBPIE
+0

• Move (MVN) the PM in the right hit of PICA+0
into the PM field of the PRB PSW

• Put a return code of zero (no previous SPIE
Environment) into R1 for return to the
program that issued SVC 14

27

Modify a SPIE environment - Program Logic

SVC 14 (Type 3) - SPIE

• Confirm that a valid SPIE Environment exists
by checking the chain of CBs
If any items are incorrect, XOPC 25 (force
abend)

• NON-zero TCBPIE contains A(SCA)

• NON-zero SCA contains A(PIE), and bit 0
is zero

• NON-zero PIE contains A(PICA), and bit 0
is zero

28

Modify a SPIE environment - Program Logic

SVC 14 (Type 3) - SPIE

• Save A(OLD! PICA) from PIE+1
Move A(NEW! PICA) into PIE+1

• Set PIE+0 to 0

• Move PM from right hit of NEW! PICA+0 into
PM field of PRB PSW

• Put the address of the previous saved A(OLD!
PICA) into Reg. 1 for return to the program
that issued SVC 14

29

Modify a SPIE environment - Program Logic

SVC 14 (Type 3) - SPIE

Note: ! A request to Modify a SPIE Environment
does NOT call for you to change the (original)
PSW PM that is stored in the TCBPIE+0

30

Cancel a SPIE environment - Program Logic

SVC 14 (Type 3) - SPIE

• When one of the “three circumstances” signals
that a SPIE Environment is to be canceled, the
first test is of the TCBPIE to see if a SPIE
Environment exists

• If it does not, return a zero in R1

31

Cancel a SPIE environment - Program Logic

SVC 14 (Type 3) - SPIE

• If a SPIE Environment does exist

• Move the saved PSW PM from TCBPIE+0
into the PM field of the PRB PSW

• Obtain A(SCA) and clear the TCBPIE to
zero

• Obtain A(PIE) and clear the SCA
(TCBDMSCA) to zero

32

Cancel a SPIE environment - Program Logic

SVC 14 (Type 3) - SPIE

• If a SPIE Environment does exist

• Save A(PICA) from PIE+1 and zero the first
four bytes of the PIE

• Put A(PICA) into R1 for return from
SVC 14

33

Rules for Operation in a SPIE Exit Routine

Overview

• On entry to an Exit Routine (ER)

• R15 is base register

• R14 is A(Portia SVC 3)

• R1 is A(PIE)

34

Overview

Rules for Operation in a SPIE Exit Routine

• On entry to an Exit Routine (ER)

• The PSW as it was at the time
of the PC interrupt is in PIE+4

• R14 - R2 as they were at the
time of the PC interrupt in
PIE+12

• R3 through R13 are as they
were at the time of the PC
interrupt

X'00'
InEx Flag

AL3(PICA)

1ST HALF PSW

2ND HALF PSW

GPR14

GPR15

GPR0

GPR1

GPR2

PIE

35

Overview

Rules for Operation in a SPIE Exit Routine

• On entry to the ER you may STM
R0,R15,EXITSAVE

• If that is done you must LM R3,R14,EXITSAVE
+3*4 before BR R14

• Changes to R14 - R2 that you want to be in
effect on return from the ER should be made
to the register areas in the PIE

• Make any desired changes to R3 - R13 at the
appropriate location in EXITSAVE

36

'Portia' Modifications to SVC 3

Overview

• Create a 'Portia’ SVC 3 located IMMEDIATELY
before the entry point of the PC-FLIH

• Modify SVC 3 to for the 'Portia' concept

• On entry to SVC 3, test whether this is a
'Portia' entry or whether this is a regular
entry

• To do this, determine if the SVC 3
instruction was the one located
immediately before the PC-FLIH

37

Overview

'Portia' Modifications to SVC 3

• If this is not a 'Portia' entry

• Proceed with standard SVC 3 code

• If this is a 'Portia' entry

• Run the CB chain from the TCB to get
A(SCA) and A(PIE)

• Do NOT assume that R1 points to the PIE!

38

Program Logic

'Portia' Modifications to SVC 3

• If SCA InEx bit = 0, XOPC 25
Otherwise, set it to 0 and set the PIE InEx bit
to 0

• R3-R13 are now in TCBGRS as they were at
the time of the BR R14 from ER

39

Program Logic

'Portia' Modifications to SVC 3

• Move R14 - R2 from PIE to TCBGRS

• Move the second half of the PSW from the PIE
to the RBOPSW+4

• Exit the SVC 3 module via BR R14 and return
to the SVC-FLIH

40

'Portia' Modifications to SVC 3

• Remember what happens in the SVC-FLIH
immediately upon return from a Type-1 SVC
module? The SVC-FLIH moves R15-R1 into the
corresponding TCBGRS

• It is therefore, IMPERATIVE, that on exit from
SVC 3 the contents of R15-R1 are the SAME as
the contents of those register locations in
TCBGRS!

41

Actual Program Logic

'Portia' Modifications to SVC 3

• Move R14 - R2 from PIE to TCBGRS

• Move the second half of the PSW from the PIE
to the RBOPSW+4

• Load R15 and R0 - R1 from TCBGRS

• Exit the SVC 3 module via BR R14 and return
to the SVC-FLIH

42

Part 5: FLIH: I/O Interrupts

Sneak Preview

• Priority: It's Just Swiss & American

• So that's why we need a Wait TCB/RB

• I/O, All it is: Get it going; Get it finished

• But, It's asynchronous: Can you catch it?

• Partial solution: More (and better) CBs

43

Questions

www.cs.niu.edu/~rrannie

rrannie@cs.niu.edu

m-kozomara@ti.com

44

